/Физика реактивное движение: Реактивное движение — урок. Физика, 9 класс.

Физика реактивное движение: Реактивное движение — урок. Физика, 9 класс.

Содержание

Реактивное движение или как летит ракета в космосе?

 

Реактивное движение — это все же движение. А мы знаем, что чтобы происходило движение, необходимо воздействие некоторой силы. Тело либо само должно оттолкнуться от чего-нибудь, либо стороннее тело должно толкнуть данное. Это хорошо известно и понятно нам из жизненного опыта.

От чего оттолкнуться в космосе?

У поверхности Земли можно оттолкнуться от поверхности либо от находящихся на ней предметов. Для передвижения по поверхности используют ноги, колеса, гусеницы и так далее. В воде и воздухе можно отталкиваться от самих воды и воздуха, имеющих определенную плотность, и потому позволяющих взаимодействовать с ними. Природа для этого приспособила плавники и крылья.

Человек создал двигатели на основе пропеллеров, которые во много раз увеличивают площадь контакта со средой за счет вращения и позволяют отталкиваться от воды и воздуха. А как быть в случае безвоздушного пространства? От чего отталкиваться в космосе? Там нет воздуха, там ничего нет. Как осуществлять полеты в космосе? Вот тут-то и приходит на помощь закон сохранения импульса и принцип реактивного движения. Разберем подробнее.

Импульс и принцип реактивного движения

Импульс это произведение массы тела на его скорость. Когда тело неподвижно, его скорость равна нулю. Однако тело обладает некоторой массой. При отсутствии сторонних воздействий, если часть массы отделится от тела с некоторой скоростью, то по закону сохранения импульса, остальная часть тела тоже должна приобрести некоторую скорость, чтобы суммарный импульс остался по-прежнему равным нулю.

Причем скорость оставшейся основной части тела будет зависеть от того, с какой скоростью отделится меньшая часть. Чем эта скорость будет выше, тем выше будет и скорость основного тела. Это понятно, если вспомнить поведение тел на льду или в воде.

Если два человека будут находиться рядом, а потом один из них толкнет другого, то он не только придаст тому ускорение, но и сам отлетит назад. И чем сильнее он толкнет кого-либо, тем с большей скоростью отлетит сам.

Наверняка, вам приходилось бывать в подобной ситуации, и вы можете представить себе, как это происходит. Так вот, именно на этом и основано реактивное движение.

Ракеты, в которых реализован этот принцип, выбрасывают некоторую часть своей массы на большой скорости, вследствие чего сами приобретают некоторое ускорение в противоположном направлении.

Потоки раскаленных газов, возникающие в результате сгорания топлива, выбрасываются через узкие сопла для придания им максимально большой скорости. При этом, на величину массы этих газов уменьшается масса ракеты, и она приобретает некую скорость. Таким образом реализован принцип реактивного движения в физике.

Принцип полета ракеты

В ракетах применяют многоступенчатую систему. Во время полета нижняя ступень, израсходовав весь свой запас топлива, отделяется от ракеты, чтобы уменьшить ее общую массу и облегчить полет.

Количество ступеней уменьшается, пока не остается рабочая часть в виде спутника или иного космического аппарата. Топливо рассчитывают таким образом, чтобы его хватило как раз для выхода на орбиту.

При посадках на космические тела рассчитывают количество топлива для посадки и на обратный путь, если он запланирован.

Нужна помощь в учебе?



Предыдущая тема: Импульс тела: закон сохранения импульса: понятия и формулы
Следующая тема:&nbsp&nbsp&nbspКолебания: свободные колебания, колебательные системы, маятник

Тест по физике Реактивное движение. Закон сохранения (9 класс)

Сложность: знаток.Последний раз тест пройден 13 часов назад.

  1. Вопрос 1 из 10

    Какой закон лежит в основе реактивного движения?

    • Правильный ответ
    • Неправильный ответ
    • Вы и еще 65% ответили правильно
    • 65% ответили правильно на этот вопрос

    В вопросе ошибка?

    Следующий вопросПодсказка 50/50Ответить
  2. Вопрос 2 из 10

    Благодаря реактивному движению перемещаются

    • Правильный ответ
    • Неправильный ответ
    • Вы и еще 66% ответили правильно
    • 66% ответили правильно на этот вопрос

    В вопросе ошибка?

    Подсказка 50/50Ответить
  3. Вопрос 3 из 10

    Выберите верное(-ые) утверждение(-я). Реактивное движение позволяет: А: двигаться в безвоздушном пространстве; Б: тормозить в безвоздушном пространстве; В: сообщать ракете первую космическую скорость.

    • Правильный ответ
    • Неправильный ответ
    • Вы и еще 54% ответили правильно
    • 54% ответили правильно на этот вопрос

    В вопросе ошибка?

    Подсказка 50/50Ответить
  4. Вопрос 4 из 10

    Кто впервые разработал теорию движения ракет?

    • Правильный ответ
    • Неправильный ответ
    • Вы и еще 63% ответили правильно
    • 63% ответили правильно на этот вопрос

    В вопросе ошибка?

    Подсказка 50/50Ответить
  5. Вопрос 5 из 10

    В каком году был запущен первый ИСЗ?

    • Правильный ответ
    • Неправильный ответ
    • Вы и еще 52% ответили правильно
    • 52% ответили правильно на этот вопрос

    В вопросе ошибка?

    Подсказка 50/50Ответить
  6. Вопрос 6 из 10

    С неподвижной лодки массой 50 кг на берег прыгнул мальчик массой 40 кг со скоростью 1 м/с, направленной горизонтально. Какую скорость относительно берега приобрела лодка?

    • Правильный ответ
    • Неправильный ответ
    • Вы и еще 65% ответили правильно
    • 65% ответили правильно на этот вопрос

    В вопросе ошибка?

    Подсказка 50/50Ответить
  7. Вопрос 7 из 10

    Неподвижная лодка вместе с находящимся в ней охотником имеет массу 250 кг. Охотник выстреливает из охотничьего ружья в горизонтальном направлении. Какую скорость получит лодка после выстрела? Масса пули 8 г, а ее скорость при вылете равна 700 м/с.

    • Правильный ответ
    • Неправильный ответ
    • Вы ответили лучше 58% участников
    • 42% ответили правильно на этот вопрос

    В вопросе ошибка?

    Подсказка 50/50Ответить
  8. Вопрос 8 из 10

    Сани с охотником покоятся на очень гладком льду. Охотник стреляет из ружья в горизонтальном направлении. Масса заряда 0,03 кг. Скорость саней после выстрела 0,15 м/с. Общая масса охотника, ружья и саней равна 120 кг. Определите скорость заряда при его вылете из ружья.

    • Правильный ответ
    • Неправильный ответ
    • Вы ответили лучше 61% участников
    • 39% ответили правильно на этот вопрос

    В вопросе ошибка?

    Подсказка 50/50Ответить
  9. Вопрос 9 из 10

    Игрок в керлинг скользит с игровым камнем по льду со скоростью 4 м/с. В некоторый момент он аккуратно толкает камень в направлении своего движения. Скорость камня при этом возрастает до 6 м/с. Масса камня 20 кг, а игрока 80 кг. Какова скорость игрока после толчка? Трение коньков о лед не учитывайте.

    • Правильный ответ
    • Неправильный ответ
    • Вы ответили лучше 61% участников
    • 39% ответили правильно на этот вопрос

    В вопросе ошибка?

    Подсказка 50/50Ответить
  10. Вопрос 10 из 10

    Ракета, состоящая из двух ступеней, двигалась со скоростью v

    0 = 6 км/с (рис. а). Первая ступень после отделения стала двигаться со скоростью v1 = 2 км/с (рис. б). Масса первой ступени m1 = 1 т, а масса второй m2 = 2 т. Скорость второй ступени после отделения первой равна
    • Правильный ответ
    • Неправильный ответ
    • Вы ответили лучше 70% участников
    • 30% ответили правильно на этот вопрос

    В вопросе ошибка?

    Подсказка 50/50Ответить

Доска почёта

Чтобы попасть сюда — пройдите тест.

ТОП-3 тестакоторые проходят вместе с этим
Рейтинг теста

Средняя оценка: 3.1. Всего получено оценок: 163.

А какую оценку получите вы? Чтобы узнать — пройдите тест.

Закон сохранения импульса — опредление, формулы, формулировка

Импульс: что это такое

Как-то раз Рене Декарт (это который придумал ту самую декартову систему координат) решил, что каждый раз считать силу, чтобы описать процессы — как-то лень и сложно.

Для этого нужно ускорение, а оно не всегда очевидно. Тогда он придумал такую величину, как импульс. Импульс можно охарактеризовать, как количество движения — это произведение массы на скорость.

Импульс тела

→ →
p = mv


p — импульс тела [кг*м/с]

m — масса тела [кг]

v — скорость [м/с]

Закон сохранения импульса

В физике и правда ничего не исчезает и не появляется из ниоткуда. Импульс — не исключение. В замкнутой изолированной системе (это та, в которой тела взаимодействуют только друг с другом) закон сохранения импульса звучит так:

Закон сохранения импульса


Векторная сумма импульсов тел в замкнутой системе постоянна

А выглядит — вот так:

Закон сохранения импульса

→ → →
p1 + p2 + … + pn = const


p — импульс тела [кг*м/с]

Простая задачка

Мальчик массой m = 45 кг плыл на лодке массой M = 270 кг в озере и решил искупаться. Остановил лодку (совсем остановил, чтобы она не двигалась) и спрыгнул с нее с горизонтально направленной скоростью 3 м/с. С какой скоростью станет двигаться лодка?

Решение:

Запишем закон сохранения импульса для данного процесса.

→ → →
p0 = p1 + p2

p0 — это импульс системы мальчик + лодка до того, как мальчик спрыгнул,

p1 — это импульс мальчика после прыжка,

p2 — это импульс лодки после прыжка.

Изобразим на рисунке, что происходило до и после прыжка.


Если мы спроецируем импульсы на ось х, то закон сохранения импульса примет вид

0 = p1 — p2
p1 = p2

Подставим формулу импульса.
mV1 = MV2

Выразим скорость лодки V2:
V2 = mV1/M

Подставим значения:
V2 = 45*3/270 = 3/6 = ½ = 0,5 м/с

Ответ: скорость лодки после прыжка равна 0,5 м/с

Задачка посложнее

Тело массы m1 = 800 г движется со скоростью v1 = 3 м/с по гладкой горизонталь- ной поверхности. Навстречу ему движется тело массы m2 = 200 г со скоростью v2 = 13 м/с. Происходит абсолютно неупругий удар (тела слипаются). Найти скорость тел после удара.

Решение: Для данной системы выполняется закон сохранения импульса:


Импульс системы до удара — это сумма импульсов тел, а после удара — импульс «получившегося» в результате удара тела.

p1 + p2 = p.

Спроецируем импульсы на ось х:

p1 — p2 = p

После неупругого удара получилось одно тело массы m1 + m2, которое движется с искомой скоростью:

m1v1 — mv2 = (m1 + m2) v

Отсюда находим скорость тела, образовавшегося после удара:

v = (m1v1 — mv2)/(m1 + m2)

Переводим массу в килограммы и подставляем значения:

v = (0,8·3−0,2·13)/(0,8 + 0,2) = 2,4 — 2,6 = -2,6 м/с

В результате мы получили отрицательное значение скорости. Это значит, что в самом начале на рисунке мы направили скорость после удара неправильно.

Знак минус указывает на то, что слипшиеся тела двигаются в сторону, противоположную оси X. Это никак не влияет на значение получившееся значение.

Ответ: скорость системы тел после соударения равна v = 0,2 м/с.

Второй закон Ньютона в импульсной форме

Второй закон Ньютона в импульсной форме можно получить следующим образом. Пусть для определенности векторы скоростей тела и вектор силы направлены вдоль одной прямой линии, т. е. движение прямолинейное.

Запишем второй закон Ньютона, спроецированный на ось х, сонаправленную с направлением движения и ускорением:

a = F/m

Применим выражение для ускорения

a = Δv/Δt

В этих уравнениях слева находится величина a . Так как левые части уравнений равны, можно приравнять правые их части

F/m = Δv/Δt

Полученное выражение является пропорцией. Применив основное свойство пропорции, получим такое выражение:

F⋅Δt = Δv⋅m

В правой части находится Δv =v —v0 — это разница между конечной и начальной скоростью.

Преобразуем правую часть

Δv⋅m = (v —v0)⋅m

Раскрыв скобки, получим

Δv⋅m= v ⋅m—v0⋅m

Заменим произведение массы и скорости на импульс:

v⋅m=p

v0⋅m=p0

Подставляем:

Δv⋅m=p —p0

p —p0 =Δp

Или, сокращенно:

Δv⋅m=Δp

То есть, вектор Δv⋅m – это вектор Δp.

Тогда второй закон Ньютона в импульсной форме запишем так

F⋅Δt =Δp

Вернемся к векторной форме, чтобы данное выражение было справедливо для любого направления вектора ускорения.


F⋅Δt =Δp⃗

Задачка про белку отлично описывает смысл второго закона Ньютона в импульсной форме

Белка с полными лапками орехов сидит на гладком горизонтальном столе. И вот кто-то бесцеремонно толкает ее к краю стола. Белка понимает законы Ньютона и предотвращает падение. Но как?

Решение:

Чтобы к белке приложить силу, которая будет толкать белку в обратном направлении от края стола, нужно создать соответствующий импульс (вот и второй закон Ньютона в импульсной форме подъехал).

Ну, а чтобы создать импульс, белка может выкинуть орехи в сторону направления движения — тогда по закону сохранения импульса ее собственный импульс будет направлен против направления скорости орехов.

Реактивное движение

В основе движения ракет, салютов и некоторых живых существ: кальмаров, осьминогов, каракатиц и медуз — лежит закон сохранения импульса. В этих случаях движение тела возникает из-за отделения какой-либо его части. Такое движение называется реактивным.

Яркий пример реактивного движения в технике — движение ракеты, когда из нее истекает струя горючего газа, которая образуется при сгорании топлива.

Сила, с которой ракета действует на газы, равна по модулю и противоположна по направлению силе, с которой газы отталкивают от себя ракету:

→ →
F1 = — F2

Сила F2 называется реактивной. Это та сила, которая возникает в процессе отделения части тела. Особенностью реактивной силы является то, что она возникает без взаимодействия с внешними телами.

Закон сохранения импульса позволяет оценить скорость ракеты.

mг vг = mр vр,
где mг — это масса горючего,

vг — скорость горючего,

mр — масса ракеты,

vр — скорость ракеты.

Отсюда можно выразить скорость ракеты:

vр = mг vг / mр

Скорость ракеты при реактивном движении

vр = mг vг / mр
mг — это масса горючего [кг]

vг — скорость горючего [м/с]

mр — масса ракеты [кг]

v р — скорость ракеты [м/с]

Эта формула справедлива для случая мгновенного сгорания топлива. Мгновенное сгорание — это теоретическая модель. В реальной жизни топливо сгорает постепенно, так как мгновенное сгорание приводит к взрыву.

«Реактивное движение» (10 класс) – тема научной статьи по механике и машиностроению читайте бесплатно текст научно-исследовательской работы в электронной библиотеке КиберЛенинка

Обсуждаем ФГОС второго поколения

Н. Л.Бойко

УРОК ФИЗИКИ ПО ТЕМЕ:

«РЕАКТИВНОЕ ДВИЖЕНИЕ» (10 КЛАСС)

Как можно сформировать УУД учащихся через самостоятельную деятельность?

Аннотация. В разработке урока представлены различные учебные ситуации, которые активизируют действия учащихся через деятельностный подход в обучении.

Ключевые слова: деятельностный подход, изготовление прибора учащимися, самостоятельное решение тестов, поиск и обработка информации в сети Интернет, проблемный метод обучения, индивидуальный и дифференцированный подход.

Цели и задачи урока

Образовательные: усвоение учащимися понятия «реактивное движение», усвоение учащимися механизма реактивного движения.

Развивающие: способствовать развитию познавательного интереса учащихся через деятельностный подход к обучению:самостоятельный поиск и обработку дополнительной информации в сети Интернет, самостоятельное изготовление модели реактивного движения; способ-

ствовать развитию навыков и умений решения задач по теме «Закон сохранения импульса».

Воспитательные: повышение уровня культуры труда и поведения на уроке; способствовать укреплению чувства патриотизма на примерах жизнедеятельности отечественных ученых: С. П. Королева, К. Э. Циолковского.

План урока

№ этапа Название этапа урока Примерная продолжительность этапа

1. Организационный момент. 1 минута

2. Повторение изученного материала. 15 минут

3. Изучение нового материала. 19 минут

4. Закрепление изученного материала. 7 минут

5. Подведение итогов урока. 2 минуты

6. Домашнее задание. 1 минута

Ход урока

1. Организационный момент.

• Приветствие.

• Сообщение учащимся целей и задач урока.

2. Повторение

изученного материала по теме «Импульс. Закон сохранения импульса».

• Тестовое задание по теме «Импульс. Закон сохранения импульса». (Деятельностный подход). Вариант № 1.

1. Единица измерения в СИ импульса тела:

А. кгм/с2 Б. кгм/с

В. кг/мс Г. кг2м/с.

2. Каково изменение импульса тела, если на него в течение 4 с действовала сила 6 Н?

A. 2 Нс Б. 10 Нс

B. 24 Нс Г. 1,5 Нс.

3. Два вагона с одинаковыми массами m движутся в одном направлении. Скорость первого вагона в два раза больше, чем скорость второго. Чему будет равен импульс вагонов после их сцепления?

A. mV Б. 2mV

B. 3mV Г. 4mV.

4. Два неупругих шара массами 1 и 0,5 кг движутся навстречу друг другу со скоростями 5 и 4 м/с. Какова будет скорость шаров после столкновения?

А. 7 м/с

Эксперимент и инновации в школе 2011/4

25

Обсуждаем ФГОС второго поколения

Б. 13,5 м/с В. 2 м/с.

Г. 4,7 м/с.

5. Импульс силы — это величина, равная

A. произведению импульса тела на время Б. изменению импульса тела

B. произведению массы тела на его ускорение

Г. произведению силы, действующей на тело, на его массу.

Вариант № 2.

1. Единица измерения в СИ импульса силы:

A. кгм/с Б. Дж

B. Нс Г. Н/с.

2. Чему равен импульс тела массой 3 кг, движущегося со скоростью 2 м/с?

A. 5 кгм/с2 Б. 6 кгм/с2

B. 9 кгм/с2 Г. 1 кгм/с2

3. Два вагона массами m и 2m движутся навстречу друг другу. Скорость первого вагона в два раза больше, чем скорость второго. Чему будет равен импульс вагонов после их сцепления?

A. 0 Б. mV

B. 2mV Г. 4mV.

4. Платформа массой 10 т движется со скоростью 2 м/с. Ее нагоняет платформа массой 15 т, движущаяся со скоростью 3 м/с. Какой будет скорость этих платформ после неупругого удара?

A. 1 м/с Б. 25 м/с

B. 2,6 м/с Г. 5 м/с.

5. В наиболее простом случае закон сохранения импульса может быть сформулирован следующим образом:

A. произведение массы тела на его ускорение равно силе.

Б. чем больше сила, приложенная к телу, тем больше его ускорение.

B. действию всегда есть равное и противоположное противодействие.

Г. при взаимодействии двух тел их общий импульс остается неизменным.

Ответы к тесту. •

1 2 3 4 5

Вариант 1 А В В Г Б

Вариант 2 В Б А В Г

• Разбор задачи повышенного уровня сложности.

Заранее сильному ученику дается домашняя задача, решение которой он разбирает на доске в классе, отвечает на возникшие вопросы.

Задача.

Граната, летевшая со скоростью 10 м/с, разорвалась на два осколка. Больший осколок, масса которого 60% массы всей гранаты, продолжал двигаться в прежнем направлении, но с увеличенной скоростью, равной 25 м/с. Найти скорость меньшего осколка. (Ответ: V2 = 12,5 м/с.)

3. Изучение нового материала.

Понятие реактивного движения вводится самими учащимися на основе наблюдения и объяснения экспериментов.

• Надуть детский резиновый шарик и отпустить его.

• Демонстрация самодельного прибора, который заранее изготавливается несколькими учениками в домашних условиях (приложение 1). (Деятельностный подход к обучению)

Вопросы для учащихся:

1. почему движется шарик?

2. в чем причина вращения прибора? (Проблемный метод обучения)

Такое движение — движение, возникающее при отделении от тела с некоторой скоростью какой-либо его части — называется реактивным.

Реактивное движение — тема нашего урока. Запишем в тетрадях тему урока и определение реактивного движения.

Реактивное движение используют для своего перемещения некоторые живые существа: осьминоги, каракатицы, кальмары и другие головоногие моллюски. Движутся они благодаря тому, что всасывают, а затем с силой выталкивают из себя воду.

Рассмотрим реактивное движение на примере движения ракеты.

Пусть ракета — замкнутая система, состоящая из оболочки и топлива. До старта импульс ракеты равен нулю, так как она находилась в покое. По закону сохранения импульса, импульс ракеты и после старта должен быть равен нулю. Поэтому импульс оболочки и импульс топлива равны по модулю и направлены в противоположные стороны. Выясним, от чего зависит скорость ракеты.

Роб Р топл

т0бЧб = m_V„

топл топл

Vq6 = КоллЧоллУф

Проанализируем полученное выражение. От каких величин зависит скорость оболочки?

1. От массы топлива. Чем она больше, тем скорость оболочки больше.

2. От массы оболочки. Чем она больше, тем скорость ракеты меньше.

3. От скорости истечения топлива. Чем она больше, тем скорость оболочки больше.

Следовательно, для увеличения скорости движения ракеты, необходимо увеличить массу топлива и скорость его истечения и одновременно уменьшить массу ракеты.

Однако наши выводы приблизительны, так как ракету мы рассматривали как замкнутую систему (а на неё действуют сила тяжести и сила сопротивления возду-

26

Эксперимент и инновации в школе 2011/4

Обсуждаем ФГОС второго поколения

ха), считали, что топливо сгорает мгновенно (на самом деле постепенно).

Реактивные двигатели используются в метеорологических и военных ракетах различного радиуса действия, в современных скоростных самолетах.

Реактивные двигатели делятся на два основных класса:

1. ракетные

2. воздушно — реактивные.

Применяются ракетные двигатели на твердом и жидком топливе. В ракетных двигателях горючее и окислитель находятся внутри двигателя. Жидкостнореактивные двигатели используются для запуска космических кораблей. Воздушно-реактивные двигатели используются в самолетах. Окислителем для горючего служит кислород воздуха, поступающего внутрь двигателя из атмосферы.

Историю ракетостроения мы узнаем из презентации, подготовленной учеником (приложение 2). (Деятельностный подход и использование ИКТ на уроке)

Идея использования ракет для космических полетов была выдвинута в начале XX века русским ученым, изобретателем и учителем Константином Эдуардовичем Циолковским. Презентация учащегося (приложение 3).

Полвека спустя идея Циолковского была развита и реализована советскими учеными под руководством Сергея Павловича Королева. Презентация учащегося (приложение 4).

4.Закрепление изученного материала.

Решение учащимися задачи и ее разбор на доске.

От двухступенчатой ракеты массой 1000 кг в момент достижения скорости 171 м/с отделилась ее вторая ступень массой 400 кг, скорость которой при этом увеличилась до 185 м/с. Найти, с какой скоростью стала двигаться первая ступень ракеты. Скорости указаны относительно наблюдателя, находящегося на Земле.

5. Итоги урока.

• Что нового узнали на этом уроке?

• Какое движение называют реактивным?

• На каком законе основано реактивное движение?

• Приведите примеры реактивного движения.

• От чего зависит скорость ракеты?

6. Домашнее задание.

§ 43, упражнение 8 № 4, 7.

Некоторым учащимся даются домашние индивидуальные задания на карточках. (Индивидуальный и дифференцированный подход)

Карточка № 1.

Космический корабль перед отделением последней ступени ракеты-носителя имел скорость V. После отбрасывания последней ступени его скорость стала равной 1,01V, при этом отделившаяся ступень удаляется относительно корабля со скоростью 0,04 V Какова масса последней ступени, если масса корабля равна m0? (Ответ: m = m0/3.)

Карточка № 2.

Тело массой 990 г лежит на горизонтальной поверхности. В него попадает пуля массой 10 г и застревает в нем. Скорость пули 700 м/с и направлена горизонтально. Какой путь пройдет тело до остановки? Коэф-

фициент трения между телом и поверхностью 0,05. (Ответ: S = 50 м.)

Карточка № 3.

Стоящий на льду человек массой 60 кг ловит мяч массой 0,5 кг, который летит горизонтально со скоростью 20 м/с. На какое расстояние откатится человек с мячом по горизонтальной поверхности льда, если коэффициент трения 0,05? (Ответ: S = 2,8 см.)

Карточка № 4.

Человек массой 60 кг переходит с носа на корму лодки. На какое расстояние переместится лодка длиной 3 м, если ее масса 120 кг? (Ответ: S =-1 м.)

Карточка № 5.

Снаряд разрывается в верхней точке траектории на высоте 19,6 м на две одинаковые части. Через время 1 с после взрыва одна часть падает на Землю под тем местом, где произошел взрыв. На каком расстоянии от места выстрела упадет вторая часть снаряда, если первая упала на расстоянии 1000 м? Силу сопротивления воздуха не учитывать. (Ответ: S = 5 км.)

Приложение

Самодельный прибор для демонстрации реактивного движения.

Литература

1. Булыгина Л. Н. Критериально-уровневый подход к оцениванию сформированности коммуникативных компетенций учащихся в образовательном процессе основной школы // Инновационные проекты и программы в образовании. — 2011. — № 1.

2. Ковылева Ю. Э. Групповая учебная работа старшеклассников на основе деятельностного подхода // Инновационные проекты и программы в образовании. — 2009. — № 2.

3. Сиденко А. С. Концептуальные подходы деятельности Школы педагога-исследователя // Эксперимент и инновации в школе. — 2008. — № 1.

4. Сторожева Н. В. Возможности использования исследовательского подхода на уроках биологии при проведении практических работ // Эксперимент и инновации в школе. — 2009. — № 5.

5. Табарданова Т. Б. Программно-целевой подход в инновационном управлении // Инновационные проекты и программы в образовании. — 2008. — № 3.

6. Чернобай Е. В. Современные подходы к использованию средств ИКТ нового поколения на уроках: интерактивная доска в учебном процессе // Эксперимент и инновации в школе. — 2009. — № 4.

Эксперимент и инновации в школе 2011/4

27

Презентация — Реактивное движение

Текст этой презентации

Слайд 1

Презентация к уроку физики в 9 классе по теме
 «Реактивное движение»
Автор материала: Марченко Ольга Ивановна, учитель физики
 высшей квалификационной категории, МОУ-СОШ №3 г. Маркса Саратовской области
г. Маркс, 2015год.

Слайд 2

Урок «открытия» нового знания 9класс Марченко Ольга Ивановна, учитель физики 2013г
Реактивное движение

Слайд 3

Цели. Образовательные: 1. Дать понятие реактивного движения, 2. Привести примеры реактивного движения в природе и технике. 3. Описать назначение, устройство, принцип действия, применение ракет. 4. Уметь определять скорость ракеты, уметь с помощью закона сохранения импульса и III закона Ньютона. 5. Показать значение работ Циолковского К.Э. и Королёва С.П. в развитии движения космических ракет. Воспитательные: показать практическое значение физических знаний по теме «Реактивное движение»; повысить трудовую и творческую активность учащихся, расширить их кругозор путём самообразования, Развивающие: формировать умение анализировать факты при наблюдении явлений; развивать навыки культурного диалога, излагать и обосновывать свою точку зрения, отстаивать правоту суждений, анализировать результаты.

Слайд 4

Гелиоцентрической системы мира
Учитель. - Вы знаете, как устроена наша Солнечная система. Кстати, как она устроена?
 — Теперь пора приступить к подробному изучению окрестностей Солнечной системы  
 -Выясним, что такое Солнце. Что такое Солнце?
Как называется такое строение? Почему оно так называется?
— Вы знаете какие планеты входят в состав Солнечной системы.  Кстати, какие?
I.Мотивация учебной деятельности.
(ближайшая звезда)

Слайд 5

   Дорога в космос.   Летел звездолет по космической трассе  И встречные звезды сверкали и гасли  Как мог, из каких перелетов и странствий,  Он вдруг оказаться в межзвездном пространстве?..  
-Пора выходить в космос!

Слайд 6

Реактивное движение
Пора выходить в космос! -Выяснить: Как «дойти» до космоса.
Летел звездолет по космической трассе  И встречные звезды сверкали и гасли  Как мог, из каких перелетов и странствий,  Он вдруг оказаться в межзвездном пространстве?..  
Но сначала давайте выясним, почему мы вообще можем передвигаться?

Слайд 7

1. Почему мы можем передвигаться по земле?
— отталкиваемся от земли

Слайд 8

1. Почему мы можем передвигаться — по воде?
отталкиваемся от воды

Слайд 9

3.Почему мы можем передвигаться по воздуху?
— отталкиваемся от воздуха
От чего отталкиваться в космосе? Как там двигаться?

Слайд 10

Задание 1. Реактивный шарик
Вывод. Воздух выходит в одну сторону-шарик движется в другую.
Давайте проведем небольшое исследование и выясним, от чего может отталкиваться тело, если отталкиваться не от чего.
Задание 1. Реактивный шарик Два человека возьмут леску, на которой закреплена трубочка с воздушным шариком, и натянут ее. Надуваем шарик и отпускаем его. Что произошло с шариком? Из-за чего шарик начал двигаться?
(от него отделился воздух)

Слайд 11

Задание 2. Реактивная коляска.
Вывод: Воздух выходит в одну сторону-коляска. движется в другую.
Возьмем тележку, к которой прикреплен воздушный шарик. Надуем шарик через соломинку. Поставим тележку на парту и отпустим шарик  
Что произошло с тележкой? Из-за чего тележка начала двигаться?
(от него отделился воздух)

Слайд 12

Тема урока: Реактивное движение
Реактивное движение – движение, возникающее при отделении от тела с некоторой скоростью какой- либо его части

Слайд 13

Физкультминутка  
Проявите фантазию и попробуйте изобразить: осьминога, кальмара, медузу, огурец.
«Бешенный» огурец
Осьминог
Кальмар

Слайд 14

ПРИМЕРЫ РЕАКТИВНОГО ДВИЖЕНИЯ В ПРИРОДЕ: Реактивное движение свойственно осьминогам, кальмарам, каракатицам, медузам – все они, без исключения, используют для плавания реакцию (отдачу) выбрасываемой струи воды

Слайд 15

Реактивное движение в технике
ИЗ ИСТОРИИ РЕАКТИВНОГО ДВИЖЕНИЯ Первые пороховые фейерверочные и сигнальные ракеты были применены в Китае в 10 веке.  В 18 веке при ведении боевых действий между Индией и Англией, а также в Русско-турецких войнах были использованы боевые ракеты. Реактивное движение используется ныне в самолетах, ракетах и космических снарядах
Реактивная установка

Слайд 16

Ракета
Задание. Откройте учебник стр.84 «Устройство и принцип действия ракеты-носителя»
Примеры реактивного движения в технике
Итак, мы нашли дорогу в космос — это реактивное движение

Слайд 17

великий русский учёный и изобретатель, открыл принцип реактивного движения, которого по праву считают основоположником ракетной техники
Константин Эдуардович Циолковский (1857-1935)
Основоположники космонавтики:

Слайд 18

Сергей Павлович Королёв(1907-1966)
конструктор космических кораблей
Основоположники космонавтики:

Слайд 19

Юрий Алексеевич Гагарин1934-1968
Первый космонавт в истории человечества 12 апреля 1961 года совершил первый пилотируемый космический полет на корабле «Восток»
Основоположники космонавтики:

Слайд 20

Одно из главнейших изобретений человечества в XX веке — это изобретение реактивного двигателя, который позволил человеку подняться в космос

Слайд 21

Решение задач Откройте учебник физики стр.87 Упражнение 21 , №2

Слайд 22

Рефлексия: Ученики друг за другом высказывают своё мнение  выбирая один из предложенных на доске вариантов: Моё сегодняшнее открытие; Что изменилось в моём понимании; В каких мыслях я укрепился; Оказывается, что…; Я узнал, что…; Кто бы мог подумать …; Мне было интересно.

Слайд 23

ДОМАШНЕЕ ЗАДАНИЕ
§ 22 Упр.21 (1- письменно; 4-проделать опыт) По выбору: ТВОРЧЕСКИЕ ЗАДАНИЯ: УСПЕХИ В ОСВОЕНИИ КОСМИЧЕСКОГО ПРОСТРАНСТВА. СОВРЕМЕННОЕ СОСТОЯНИЕ КОСМИЧЕСКИХИССЛЕДОВАНИЙ.  РАЗВИТИЕ РАКЕТОСТРОЕНИЯ И ОСВОЕНИЕ КОСМОСА.

Слайд 24

Дано
Решение
Ответ: V=33,3

Слайд 25

Литература Книга для чтения по физике 6-7 класс. И.Г.Кириллова,- М: Просвещение, 1978 Учебник: Перышкин А.В., Гутник Е.М. Физика-9 – М.: Дрофа, 2008 Ресурсы Интернета Ссылка на картинки «Реактивное движение» (https://yandex.ru/images/search?text=реактивное%20фото&stype=)

100 ballov.kz образовательный портал для подготовки к ЕНТ и КТА

Код и классификация направлений подготовки Код группы образовательной программы Наименование групп образовательных программ Количество мест
8D01 Педагогические науки   
8D011 Педагогика и психология D001 Педагогика и психология 45
8D012 Педагогика дошкольного воспитания и обучения D002 Дошкольное обучение и воспитание 5
8D013 Подготовка педагогов без предметной специализации D003 Подготовка педагогов без предметной специализации 22
8D014 Подготовка педагогов с предметной специализацией общего развития D005 Подготовка педагогов физической культуры 7
8D015 Подготовка педагогов по естественнонаучным предметам D010 Подготовка педагогов математики 30
D011 Подготовка педагогов физики (казахский, русский, английский языки) 23
D012 Подготовка педагогов информатики (казахский, русский, английский языки) 35
D013 Подготовка педагогов химии (казахский, русский, английский языки) 22
D014 Подготовка педагогов биологии (казахский, русский, английский языки) 18
D015 Подготовка педагогов географии 18
8D016 Подготовка педагогов по гуманитарным предметам D016 Подготовка педагогов истории 17
8D017 Подготовка педагогов по языкам и литературе D017 Подготовка педагогов казахского языка и литературы 37
D018 Подготовка педагогов русского языка и литературы 24
D019 Подготовка педагогов иностранного языка 37
8D018 Подготовка специалистов по социальной педагогике и самопознанию D020 Подготовка кадров по социальной педагогике и самопознанию 10
8D019 Cпециальная педагогика D021 Cпециальная педагогика 20
    Всего 370
8D02 Искусство и гуманитарные науки   
8D022 Гуманитарные науки D050 Философия и этика 20
D051 Религия и теология 11
D052 Исламоведение 6
D053 История и археология 33
D054 Тюркология 7
D055 Востоковедение 10
8D023 Языки и литература D056 Переводческое дело, синхронный перевод 16
D057 Лингвистика 15
D058 Литература 26
D059 Иностранная филология 19
D060 Филология 42
    Всего 205
8D03 Социальные науки, журналистика и информация   
8D031 Социальные науки D061 Социология 20
D062 Культурология 12
D063 Политология и конфликтология 25
D064 Международные отношения 13
D065 Регионоведение 16
D066 Психология 17
8D032 Журналистика и информация D067 Журналистика и репортерское дело 12
D069 Библиотечное дело, обработка информации и архивное дело 3
    Всего 118
8D04 Бизнес, управление и право   
8D041 Бизнес и управление D070 Экономика 39
D071 Государственное и местное управление 28
D072 Менеджмент и управление 12
D073 Аудит и налогообложение 8
D074 Финансы, банковское и страховое дело 21
D075 Маркетинг и реклама 7
8D042 Право D078 Право 30
    Всего 145
8D05 Естественные науки, математика и статистика      
8D051 Биологические и смежные науки D080 Биология 40
D081 Генетика 4
D082 Биотехнология 19
D083 Геоботаника 10
8D052 Окружающая среда D084 География 10
D085 Гидрология 8
D086 Метеорология 5
D087 Технология охраны окружающей среды 15
D088 Гидрогеология и инженерная геология 7
8D053 Физические и химические науки D089 Химия 50
D090 Физика 70
8D054 Математика и статистика D092 Математика и статистика 50
D093 Механика 4
    Всего 292
8D06 Информационно-коммуникационные технологии   
8D061 Информационно-коммуникационные технологии D094 Информационные технологии 80
8D062 Телекоммуникации D096 Коммуникации и коммуникационные технологии 14
8D063 Информационная безопасность D095 Информационная безопасность 26
    Всего 120
8D07 Инженерные, обрабатывающие и строительные отрасли   
8D071 Инженерия и инженерное дело D097 Химическая инженерия и процессы 46
D098 Теплоэнергетика 22
D099 Энергетика и электротехника 28
D100 Автоматизация и управление 32
D101 Материаловедение и технология новых материалов 10
D102 Робототехника и мехатроника 13
D103 Механика и металлообработка 35
D104 Транспорт, транспортная техника и технологии 18
D105 Авиационная техника и технологии 3
D107 Космическая инженерия 6
D108 Наноматериалы и нанотехнологии 21
D109 Нефтяная и рудная геофизика 6
8D072 Производственные и обрабатывающие отрасли D111 Производство продуктов питания 20
D114 Текстиль: одежда, обувь и кожаные изделия 9
D115 Нефтяная инженерия 15
D116 Горная инженерия 19
D117 Металлургическая инженерия 20
D119 Технология фармацевтического производства 13
D121 Геология 24
8D073 Архитектура и строительство D122 Архитектура 15
D123 Геодезия 16
D124 Строительство 12
D125 Производство строительных материалов, изделий и конструкций 13
D128 Землеустройство 14
8D074 Водное хозяйство D129 Гидротехническое строительство 5
8D075 Стандартизация, сертификация и метрология (по отраслям) D130 Стандартизация, сертификация и метрология (по отраслям) 11
    Всего 446
8D08 Сельское хозяйство и биоресурсы   
8D081 Агрономия D131 Растениеводство 22
8D082 Животноводство D132 Животноводство 12
8D083 Лесное хозяйство D133 Лесное хозяйство 6
8D084 Рыбное хозяйство D134 Рыбное хозяйство 4
8D087 Агроинженерия D135 Энергообеспечение сельского хозяйства 5
D136 Автотранспортные средства 3
8D086 Водные ресурсы и водопользование D137 Водные ресурсы и водопользования 11
    Всего 63
8D09 Ветеринария   
8D091 Ветеринария D138 Ветеринария 21
    Всего 21
8D11 Услуги   
8D111 Сфера обслуживания D143 Туризм 11
8D112 Гигиена и охрана труда на производстве D146 Санитарно-профилактические мероприятия 5
8D113 Транспортные услуги D147 Транспортные услуги 5
D148 Логистика (по отраслям) 4
8D114 Социальное обеспечение D142 Социальная работа 10
    Всего 35
    Итого 1815
    АОО «Назарбаев Университет» 65
    Стипендиальная программа на обучение иностранных граждан, в том числе лиц казахской национальности, не являющихся гражданами Республики Казахстан 10
    Всего 1890

Реактивное движение в физике | Материал по физике:

        Под реактивным движениемпонимают движение тела, возникающее при отделении от тела его части с некоторой относительно тела скоростью.

        При этом появляется так называемая реактивная сила, толкающая тело в сторону, противоположную направлению движения отделяющейся от него части тела.

        У многих людей само понятие «реактивного движения» крепко ассоциируется с современными достижениями науки и техники, в особенности физики, а в голове появляются образы реактивных самолетов или даже космических кораблей, летающих на сверхзвуковых скоростях с помощью пресловутых реактивных двигателей. На самом же деле явление реактивного движения намного более древнее, чем даже сам человек, ведь оно появилось задолго до нас, людей. Да, реактивное движение активно представлено в природе: медузы, осьминоги, каракатицы вот уже миллионы лет плавают в морских пучинах по тому же самому принципу, по которому сегодня летают современные сверхзвуковые реактивные самолеты.

История реактивного движения

С древних времен различные ученые наблюдали явления реактивного движения в природе, так раньше всех о нем писал древнегреческий математик и механик Герон, правда, дальше теории он так и не зашел.

Если же говорить о практическом применении реактивного движения, то первыми здесь были изобретательные китайцы. Примерно в XIII веке они догадались позаимствовать принцип движения осьминогов и каракатиц при изобретении первых ракет, которые они начали использовать, как для фейерверков, так и для боевых действий (в качестве боевого и сигнального оружия). Чуть позднее это полезное изобретение китайцев переняли арабы, а от них уже и европейцы.

Разумеется, первые условно реактивные ракеты имели сравнительно примитивную конструкцию и на протяжении нескольких веков они практически никак не развивались, казалось, что история развития реактивного движения замерла. Прорыв в этом деле произошел только в XIX веке.

Кто открыл реактивное движение?

Пожалуй, лавры первооткрывателя реактивного движения в «новом времени» можно присудить Николаю Кибальчичу, не только талантливому российскому изобретателю, но и по совместительству революционеру-народовольцу. Свой проект реактивного двигателя и летательного аппарата для людей он создал сидя в царской тюрьме. Позднее Кибальчич был казнен за свою революционную деятельность, а его проект так и остался пылиться на полках в архивах царской охранки.

Позднее работы Кибальчича в этом направлении были открыты и дополнены трудами еще одного талантливого ученого К. Э. Циолковского. С 1903 по 1914 год им было опубликовано ряд работ, в которых убедительно доказывалась возможность использования реактивного движения при создании космических кораблей для исследования космического пространство. Им же был сформирован принцип использования многоступенчатых ракет. И по сей день многие идеи Циолковского применяются в ракетостроении.

Примеры реактивного движения в природе

Наверняка купаясь в море, Вы видели медуз, но вряд ли задумывались, что передвигаются эти удивительные (и к тому же медлительные) существа как раз таки с благодаря реактивному движению. А именно с помощью сокращения своего прозрачного купола они выдавливают воду, которая служит своего рода «реактивных двигателем» медуз.

Похожий механизм движения имеет и каракатица – через особую воронку впереди тела и через боковую щель она набирает воду в свою жаберную полость, а затем энергично выбрасывает ее через воронку, направленную взад либо в бок (в зависимости от направления движения нужного каракатице).

Но самый интересный реактивный двигатель созданный природой имеется у кальмаров, которых вполне справедливо можно назвать «живыми торпедами». Ведь даже тело этих животных по своей форме напоминает ракету, хотя по правде все как раз с точностью наоборот – это ракета своей конструкцией копирует тело кальмара.

Если кальмару необходимо совершить быстрый бросок, он использует свой природный реактивный двигатель. Тело его окружено мантией, особой мышечной тканью и половина объема всего кальмара приходится на мантийную полость, в которую тот всасывает воду. Потом он резко выбрасывает набранную струю воды через узкое сопло, при этом складывая все свои десть щупалец над головой таким образом, чтобы приобрести обтекаемую форму. Благодаря столь совершенной реактивной навигации кальмары могут достигать впечатляющей скорости – 60-70 км в час.

Среди обладателей реактивного двигателя в природе есть и растения, а именно так званный «бешеный огурец». Когда его плоды созревают, в ответ на самое легкое прикосновение он выстреливает клейковиной с семенами

Закон реактивного движения

Кальмары, «бешеные огурцы», медузы и прочие каракатицы издревле пользуются реактивным движением, не задумываясь о его физической сути, мы же попробуем разобрать, в чем суть реактивного движения, какое движение называют реактивным, дать ему определение.

Для начала можно прибегнуть к простому опыту – если обычный воздушный шарик надуть воздухом и, не завязывая отпустить в полет, он будет стремительно лететь, пока у него не израсходуется запас воздуха. Такое явление поясняет третий закон Ньютона, говорящий, что два тела взаимодействуют с силами равными по величине и противоположными по направлению.

То есть сила воздействия шарика на вырывающиеся из него потоки воздуха равна силе, которой воздух отталкивает от себя шарик. По схожему с шариком принципу работает и ракета, которая на огромной скорости выбрасывает часть своей массы, при этом получая сильное ускорение в противоположном направлении.

Закон сохранения импульса и реактивное движение

Физика поясняет процесс реактивного движения законом сохранения импульса. Импульс это произведение массы тела на его скорость (mv). Когда ракета находится в состоянии покоя ее импульс и скорость равны нулю. Когда же из нее начинает выбрасываться реактивная струя, то остальная часть согласно закону сохранения импульса, должна приобрести такую скорость, при которой суммарный импульс будет по прежнему равен нулю.

Формула реактивного движения

В целом реактивное движение можно описать следующей формулой:
msvs+mрvр=0
msvs=-mрvр

где msvs импульс создаваемой струей газов, mрvр импульс, полученный ракетой.

Знак минус показывает, что направление движения ракеты и сила реактивного движения струи противоположны.

Реактивное движение в технике – принцип работы реактивного двигателя

В современной технике реактивное движение играет очень важную роль, так реактивные двигатели приводят в движение самолеты, космические корабли. Само устройство реактивного двигателя может отличаться в зависимости от его размера и назначения. Но так или иначе в каждом из них есть

  • запас топлива,
  • камера, для сгорания топлива,
  • сопло, задача которого ускорять реактивную струю.

Так выглядит реактивный двигатель.

 

Руководство для начинающих по движению

Общее происхождение уравнения тяги показывает, что количество создаваемой тяги зависит от массового расхода через двигатель и скорость выхода газа. Различные двигательные установки генерировать тягу немного по-разному. Мы обсудим четыре основные двигательные установки: пропеллер, турбинный (или реактивный) двигатель, ПВРД, и ракета.

Почему там разные типы двигателей? Если мы подумаем о первом Ньютоне закон движения, мы понимаем, что двигательная установка самолета должен служить двум целям. Во-первых, тяга от двигательной установки. должен уравновесить сопротивление самолета когда самолет летит. Во-вторых, тяга от движителя. система должна превышать сопротивление самолета чтобы самолет разогнался.На самом деле, чем больше разница между тягой и сопротивлением, называемой избытком тяги, тем быстрее самолет будет разгоняться.

Некоторые самолеты, как авиалайнеры и грузовые самолеты, проводят большую часть своей жизни в круизе условие. Для этих самолетов избыточная тяга не так важна. как высокий КПД двигателя и низкий расход топлива. Поскольку тяга зависит как от количества перемещаемого газа, так и от скорости, мы можем создать высокую тягу за счет ускорения большой массы газа на небольшую величину или за счет ускорения небольшой массы газа большим количество.Из-за аэродинамической эффективности гребных винтов и вентиляторы, экономичнее ускорить большую массу малым. Вот почему мы находим высокие байпасные вентиляторы и турбовинтовые двигатели на грузовых самолетах и ​​авиалайнерах.

Некоторые самолеты, как истребители или экспериментальные высокоскоростные самолеты, требуют очень высокая избыточная тяга для быстрого ускорения и преодоления высокое сопротивление, связанное с высокими скоростями.Для этих самолетов двигатель КПД не так важен, как очень большая тяга. Современный военный самолет обычно используют форсажные камеры на активной зоне ТРДД с низким байпасом. В будущих гиперзвуковых самолетах будет использоваться ПВРД или ракетный двигатель. В Руководстве для начинающих есть специальный раздел, посвященный сжимаемый, или высокая скорость, аэродинамика.Этот раздел предназначен для студентов , которые учатся ударные волны или изэнтропические потоки и содержит несколько калькуляторы и тренажеры для этого режима потока.

Сайт был подготовлено в NASA Glenn в рамках проекта Learning Technologies Project (LTP) предоставить справочную информацию по основной силовой установке для средняя учителей математики и естественных наук .Страницы изначально были подготовлено как учебных пособий в поддержку EngineSim, интерактивная образовательная компьютерная программа, которая позволяет студентам проектировать и испытывать реактивные двигатели на персональном компьютере. Другие слайды были подготовлены для поддержки семинаров LTP по видеоконференцсвязи (http://www.grc.nasa.gov/WWW/K-12/CoE/Coemain.html) для учителей и студенты. И другие слайды подготовлены в рамках Презентации Power Point для Сеть цифрового обучения.

Мы намеренно организовал этот сайт, чтобы отразить неструктурированную природу мира Интернет. Здесь связано много страниц друг к другу через гиперссылки. Затем вы можете перемещаться по ссылки, основанные на вашем собственном интересе и запросе. Однако если вы предпочитаете более структурированный подход, вы также можете воспользоваться одним из наших Экскурсии по сайту.Каждый тур предоставляет последовательность страниц, посвященных некоторым аспектам движения.


Для младших школьников более простое объяснение информации на этой странице доступно на сайте Детская страница.


УВЕДОМЛЕНИЕ — Сайт недавно был изменен в соответствии с разделом 508 Закона о реабилитации. Многие страницы содержат математические уравнения, представленные графически. и которые слишком длинные или сложные для использования в теге «ALT».Для этих страниц мы сохранили (несоответствующую) графическую страницу и предоставили отдельную (совместимая) текстовая страница, которая содержит всю информацию исходной страницы. Две страницы связаны гиперссылками.


Действия:
Наборы задач для BGP

Навигация ..
Руководство для начинающих Домашняя страница
Бесплатное программное обеспечение

Ракетная силовая установка

Тяга — это сила, которая перемещает любой самолет по воздуху.Тяга создается силовая установка самолета. Различные двигательные установки развивают тягу в разными способами, но вся тяга создается за счет некоторых применение третьего закона Ньютона движение. На каждое действие есть равная и противоположная реакция. В любой двигательной установке рабочее тело ускоряется системой и реакция на это ускорение создает силу в системе. А общий вывод уравнения тяги показывает, что величина создаваемой тяги зависит от массовый поток через двигатель и скорость на выходе газа.

Во время и после Второй мировой войны было несколько ракетных двигателей. самолет с двигателем, созданный для исследования высокоскоростной полет. X-1A, используемый для преодолеть «звуковой барьер», и Х-15 оказались реактивные самолеты. В ракетном двигателе топливо и источник кислорода, называемый окислителем, смешивается и взрывается в камере сгорания. В горение производит горячий выхлоп, который проходит через сопло чтобы ускорить поток и производить тягу.Для ракеты ускоренный газ, или рабочее тело, — горячий выхлоп, образующийся при сгорании. Это другая рабочая жидкость, чем в газотурбинный двигатель или пропеллер приведенный в действие самолет. Турбинные двигатели и винты используют воздух из атмосферы в качестве рабочего тела, но ракеты используют выхлопные газы сгорания. В космосе нет атмосферы, поэтому турбины и пропеллеры не может там работать. Это объясняет, почему ракета работает в космосе. но газотурбинный двигатель или пропеллер не работают.

Есть две основные категории ракетных двигателей; жидких ракет и твердотопливных ракет . В жидкая ракета, топливо , топливо и окислитель, хранятся отдельно как жидкости и закачиваются в камера сгорания форсунки где происходит горение. В твердотопливная ракета пропелленты смешиваются вместе и упакованы в прочный баллон. В нормальных температурных условиях пропелленты не горят; но они будут гореть при воздействии источник тепла, обеспечиваемый воспламенителем.Как только начнется горение, он продолжается до тех пор, пока не будет исчерпано все топливо. С жидкостной ракетой вы можете остановить тягу, отключив поток пропелленты; а твердотопливной ракетой нужно разрушить корпус, чтобы остановить двигатель. Жидкие ракеты, как правило, тяжелее и тяжелее. сложный из-за насосов и резервуаров. Пропелленты загружается в ракету непосредственно перед запуском. Твердотопливная ракета намного проще в обращении и может простоять годами перед стрельбой.

На этом слайде мы показываем картинку с ракетным двигателем Х-15. самолет в верхнем левом углу и фотография испытания ракетного двигателя на нижний правый. На картинке справа мы видим только вне сопла ракеты, при этом горячий газ выходит из Нижний. X-15 был оснащен жидкостным ракетным двигателем и нес один пилот на высоту более 60 миль над землей. На Х-15 летали больше чем в шесть раз быстрее скорости звука почти 40 лет назад.В рекорд скорости только для пилотируемого самолета превышен сегодня космическим шаттлом. Рекорд высоты ставит только космический шаттл. и недавний космический корабль 1, который также использовал ракетную тягу.


Действия:

Экскурсии с гидом
  • Силовые установки:
  • Ракет:

Навигация..


Руководство для начинающих Домашняя страница

Знакомство с ракетным двигателем | Физика

Цели обучения

К концу этого раздела вы сможете:

  • Третий закон движения Ньютона.
  • Объясните принцип приведения в движение ракет и реактивных двигателей.
  • Выведите выражение для ускорения ракеты.
  • Обсудите факторы, влияющие на ускорение ракеты.
  • Опишите функцию космического челнока.
Ракеты

различаются по размеру от фейерверков, настолько маленьких, что обычные люди используют их до огромных ракет «Сатурн V», которые когда-то отправляли огромные полезные грузы к Луне. Движение всех ракет, реактивных двигателей, спускаемых воздушных шаров и даже кальмаров и осьминогов объясняется одним и тем же физическим принципом — третьим законом движения Ньютона. Материя принудительно выбрасывается из системы, вызывая равную и противоположную реакцию на то, что остается. Другой распространенный пример — отдача ружья.Пистолет оказывает на пулю силу, ускоряющую ее, и, следовательно, испытывает равную и противоположную силу, вызывая отдачу или толчок пистолета.

Установление соединений: домашний эксперимент — движение воздушного шара

Возьмите воздушный шар и наполните его воздухом. Затем отпустите воздушный шар. В каком направлении выходит воздух из воздушного шара и в каком направлении он движется? Если вы наполните воздушный шар водой, а затем отпустите его, изменится ли направление воздушного шара? Поясните свой ответ.

На рис. 1 показана ракета, ускоряющаяся вертикально вверх. На рис. 1а ракета имеет массу м и скорость v относительно Земли, и, следовательно, импульс мв . На рисунке 1b истекло время Δ t , за которое ракета выбросила горячий газ массой Δ m со скоростью v e относительно ракеты. Остальная часть массы ( м — Δ м ) теперь имеет большую скорость ( v + Δ v ).Импульс всей системы (ракета плюс выброшенный газ) фактически уменьшился, потому что сила тяжести действовала в течение времени Δ t , создавая отрицательный импульс Δ p = — мг Δ t . (Помните, что импульс — это чистая внешняя сила, действующая на систему, умноженная на время ее действия, и она равна изменению количества движения системы.) Итак, центр масс системы находится в свободном падении, но из-за быстрого вытеснения массы , часть системы может ускоряться вверх.Распространено заблуждение, что выхлоп ракеты сталкивается с землей. Если рассматривать тягу; то есть сила, действующая на ракету со стороны выхлопных газов, тогда тяга ракеты больше в космическом пространстве, чем в атмосфере или на стартовой площадке. На самом деле газы легче удалить в вакуум.

Рис. 1. (a) Эта ракета имеет массу м и скорость вверх v . Чистая внешняя сила, действующая на систему, составляет — мг , если пренебречь сопротивлением воздуха.(b) Спустя время Δt система состоит из двух основных частей: выбрасываемого газа и остальной части ракеты. Сила реакции на ракету — это то, что преодолевает силу тяжести и ускоряет ее вверх.

Рассчитав изменение количества движения для всей системы за Δ t и приравняв это изменение к импульсу, можно показать, что следующее выражение является хорошим приближением для ускорения ракеты.

[латекс] \ displaystyle {a} = \ frac {v _ {\ text {e}}} {m} \ frac {\ Delta {m}} {\ Delta {t}} — g \\ [/ latex]

«Ракета» — это часть системы, остающаяся после выброса газа, а g — ускорение свободного падения.

Разгон ракеты

Ускорение ракеты

[латекс] \ displaystyle {a} = \ frac {v _ {\ text {e}}} {m} \ frac {\ Delta {m}} {\ Delta {t}} — g \\ [/ latex]

, где a — ускорение ракеты, v e — убегающая скорость, м — масса ракеты, Δ м — масса выброшенного газа, Δ t — время выброса газа.

Ускорение ракеты зависит от трех основных факторов, согласующихся с уравнением ускорения ракеты.Во-первых, чем больше скорость истечения газов относительно ракеты, v e , тем больше ускорение. Практический предел для v e составляет около 2,5 × 10 3 м / с для обычных (неядерных) двигательных установок на горячем газе. Второй фактор — это скорость выброса массы из ракеты. Это коэффициент [латекс] \ frac {\ Delta {m}} {\ Delta {t}} \\ [/ latex] в уравнении. Величина [латекс] \ left (\ frac {\ Delta {m}} {\ Delta {t}} \ right) v _ {\ text {e}} \\ [/ latex] в единицах ньютонов называется « толкать.«Чем быстрее ракета сжигает топливо, тем больше у нее тяга и больше ускорение. Третий фактор — это масса м ракеты. Чем меньше масса (при прочих равных), тем больше ускорение. Масса ракеты м резко уменьшается во время полета, потому что большая часть ракеты изначально является топливом, поэтому ускорение непрерывно увеличивается, достигая максимума непосредственно перед тем, как топливо будет исчерпано.

Факторы, влияющие на ускорение ракеты

  • Чем больше скорость истечения v e газов относительно ракеты, тем больше ускорение.
  • Чем быстрее ракета сжигает топливо, тем больше ее ускорение.
  • Чем меньше масса ракеты (при прочих равных), тем больше ускорение.

Пример 1. Расчет ускорения: начальное ускорение при запуске Луны

Масса Сатурна V при взлете составляла 2,80 × 10 6 кг, его скорость сжигания топлива составляла 1,40 × 10 4 кг / с, а скорость истечения составляла 2,40 × 10 3 м / с. Рассчитайте его начальное ускорение.2 \ end {array} \\ [/ latex]

Обсуждение

Это значение довольно мало даже для начального ускорения. Ускорение неуклонно увеличивается по мере того, как ракета сжигает топливо, потому что м уменьшается, а v e и [latex] \ frac {\ Delta {m}} {\ Delta {t}} \\ [/ latex] остаются постоянный. Зная это ускорение и массу ракеты, можно показать, что тяга двигателей составляла 3,36 × 10 7 Н.

Чтобы достичь высоких скоростей, необходимых для перемещения по континентам, выхода на орбиту или полного выхода из гравитации Земли, масса ракеты, за исключением топлива, должна быть как можно меньше.Можно показать, что в отсутствие сопротивления воздуха и без учета силы тяжести конечная скорость одноступенчатой ​​ракеты, первоначально находящейся в состоянии покоя, равна [латекс] v = v _ {\ text {e}} \ ln \ frac {m_0} { m_ \ text {r}} \\ [/ latex], где [latex] \ ln \ frac {m_0} {m_ \ text {r}} \\ [/ latex] — натуральный логарифм отношения начальной массы ракеты ( м 0 ) до того, что осталось ( м r ) после того, как все топливо будет израсходовано. (Обратите внимание, что v на самом деле является изменением скорости, поэтому уравнение можно использовать для любого участка полета.{4.48} = 88 \\ [/ латекс]

Таким образом, масса ракеты

[латекс] \ displaystyle {m} _ {\ text {r}} = \ frac {m_0} {88} \\ [/ latex]

Рис. 2. Космический шаттл имел несколько частей многоразового использования. Твердотопливные ускорители с обеих сторон восстанавливались и заправлялись топливом после каждого полета, а весь орбитальный аппарат возвращался на Землю для использования в последующих полетах. Израсходовался большой бак жидкого топлива. Космический шаттл представлял собой сложную совокупность технологий, в которых использовалось как твердое, так и жидкое топливо, а также новаторская керамическая плитка в качестве теплозащитных экранов при входе в атмосферу.В результате он позволял запускать несколько раз вместо одноразовых ракет. (кредит: НАСА)

Этот результат означает, что при сгорании топлива остается только 1/88 массы, а 87/88 начальной массы составляло топливо. В процентах 98,9% ракеты составляет топливо, а полезная нагрузка, двигатели, топливные баки и другие компоненты составляют лишь 1,10%. Принимая во внимание сопротивление воздуха и силу тяжести, масса м r оставшаяся может быть только около м 0 /180.Трудно построить ракету, в которой топливо имеет массу в 180 раз больше, чем все остальное. Решение — многоступенчатые ракеты. Каждая ступень должна достичь только части конечной скорости и выбрасывается после сжигания топлива. В результате каждая последующая ступень может иметь двигатели меньшего размера и большую полезную нагрузку относительно топлива. После выхода из атмосферы соотношение полезной нагрузки и топлива также становится более благоприятным.

Космический шаттл был попыткой создания экономичного транспортного средства с некоторыми частями многоразового использования, такими как твердотопливные ускорители и сам корабль.(См. Рис. 2). Потребность в управлении шаттлом, однако, сделала его запуск спутников не менее дорогостоящим, чем беспилотные ракеты одноразового использования. В идеале шаттл должен был использоваться только тогда, когда для успеха миссии требовалась человеческая деятельность, например, ремонт космического телескопа Хаббл. Ракеты со спутниками также могут запускаться с самолетов. Использование самолетов имеет двойное преимущество: начальная скорость значительно выше нуля, и ракета может избежать большей части сопротивления атмосферы.

Исследования PhET: Lunar Lander

Можете ли вы избежать поля валунов и безопасно приземлиться непосредственно перед тем, как у вас закончится топливо, как это сделал Нил Армстронг в 1969 году? Наша версия этой классической видеоигры точно имитирует реальное движение лунного посадочного модуля с правильной массой, тягой, уровнем расхода топлива и лунной гравитацией. Настоящий лунный аппарат очень сложно контролировать.

Щелкните, чтобы запустить моделирование.

Сводка раздела

  • Третий закон движения Ньютона гласит, что на каждое действие есть равное и противоположное противодействие.
  • Ускорение ракеты составляет [латекс] \ displaystyle {a} = \ frac {v _ {\ text {e}}} {m} \ frac {\ Delta {m}} {\ Delta {t}} — g \\ [/латекс].
  • Ускорение ракеты зависит от трех основных факторов. Они есть
    • Чем больше скорость выхлопа газов, тем больше ускорение.
    • Чем быстрее ракета сжигает топливо, тем больше ее ускорение.
    • Чем меньше масса ракеты, тем больше ускорение.

Концептуальные вопросы

  1. Профессиональное приложение. Предположим, что снаряд фейерверка взрывается, разбиваясь на три больших части, сопротивление воздуха которых незначительно. Как взрыв влияет на движение центра масс? Как это повлияет, если части будут испытывать значительно большее сопротивление воздуха, чем неповрежденная оболочка?
  2. Профессиональное приложение. Во время посещения Международной космической станции астронавт неподвижно стоял в центре станции, вне досягаемости любого твердого объекта, на который он мог бы воздействовать.Предложите метод, с помощью которого он мог бы отойти от этой позиции, и объясните, что это за физика.
  3. Профессиональное приложение. Скорость ракеты может быть больше, чем скорость истечения газов, которые она выбрасывает. В этом случае скорость и импульс газа совпадают с направлением движения ракеты. Как ракета все еще может получить тягу, выбрасывая газ?

Задачи и упражнения

  1. Профессиональное приложение. Антибаллистические ракеты (ПРО) спроектированы так, чтобы иметь очень большое ускорение, чтобы они могли перехватывать быстро летящие приближающиеся ракеты в кратчайшие сроки. Каково взлетное ускорение 10 000 кг ПРО, выбрасывающего 196 кг газа в секунду при скорости истечения 2,50 × 10 3 м / с?
  2. Профессиональное приложение. Каково ускорение ракеты массой 5000 кг, взлетающей с Луны, где ускорение свободного падения составляет всего 1,6 м / с 2 , если ракета выбрасывает 8.00 кг газа в секунду при скорости истечения 2,20 × 10 3 м / с?
  3. Профессиональное приложение. Рассчитайте увеличение скорости космического зонда массой 4000 кг, который выбрасывает 3500 кг своей массы при скорости истечения 2,00 × 10 3 м / с. Вы можете предположить, что гравитационная сила незначительна в месте нахождения зонда.
  4. Профессиональное приложение. Ракеты с ионными двигателями предложены для использования в космосе. Они используют методы атомной ионизации и ядерные источники энергии для получения чрезвычайно высоких скоростей выхлопа, возможно, до 8.00 × 10 6 м / с. Эти методы позволяют получить гораздо более благоприятное соотношение полезной нагрузки к топливу. Чтобы проиллюстрировать этот факт: (a) Рассчитайте увеличение скорости космического зонда массой 20 000 кг, который выбрасывает только 40,0 кг своей массы при данной скорости истечения. (б) Эти двигатели обычно предназначены для создания очень малой тяги в течение очень долгого времени — типа двигателя, который, например, может быть полезен при путешествии к внешним планетам. Вычислите ускорение такого двигателя, если он выбрасывает 4,50 × 10 −6 кг / с с заданной скоростью, предполагая, что ускорение свободного падения незначительно.
  5. Выведите уравнение вертикального ускорения ракеты.
  6. Профессиональное приложение. (a) Вычислите максимальную скорость, с которой ракета может выбрасывать газы, если ее ускорение не может превышать в семь раз ускорение силы тяжести. Масса ракеты после того, как у нее закончится топливо, составляет 75 000 кг, а ее скорость истечения составляет 2,40 × 10 3 м / с. Предположим, что ускорение свободного падения такое же, как и на поверхности Земли (9,80 м / с 2 ). б) Почему может быть необходимо ограничивать ускорение ракеты?
  7. Рассчитайте среднюю скорость выхлопа газов, выходящих из огнетушителя, с учетом следующих данных для эксперимента с ракетой-огнетушителем и игрушечной вагонеткой.Исходя из состояния покоя конечная скорость составляет 10,0 м / с. Общая масса изначально составляет 75,0 кг, а после срабатывания огнетушителя — 70,0 кг.
  8. Сколько в одноступенчатой ​​ракете весом 100000 кг может быть что угодно, кроме топлива, если ракета должна иметь конечную скорость 8,00 км / с, учитывая, что она выбрасывает газы со скоростью истечения 2,20 × 10 3 м / с?
  9. Профессиональное приложение. (a) Кальмар массой 5,00 кг первоначально в состоянии покоя выбрасывает 0,250 кг жидкости со скоростью 10.0 м / с. Какова скорость отдачи кальмара, если выброс производится за 0,100 с и существует сила трения 5,00 Н, противодействующая движению кальмара. б) Сколько энергии тратится на работу против трения?
  10. Необоснованные результаты. Сообщается, что кальмары прыгают из океана и преодолевают 30,0 м (по горизонтали), прежде чем снова войти в воду. (a) Рассчитайте начальную скорость кальмара, если он покидает воду под углом 20,0 °, принимая пренебрежимо малую подъемную силу воздуха и незначительное сопротивление воздуха.(б) Кальмар движется вперед, брызгая водой. Какую часть своей массы он должен был бы выбросить, чтобы достичь скорости, найденной в предыдущей части? Вода выбрасывается со скоростью 12,0 м / с; гравитационная сила и трение не учитываются. (c) Что неразумного в результатах? (d) Какая посылка необоснованна или какие посылки несовместимы?
  11. Постройте свою проблему. Представьте себе космонавта в глубоком космосе, освобожденного от своего космического корабля и нуждающегося в возвращении к нему.У космонавта есть несколько пакетов, которые она может выбросить, чтобы подойти к кораблю. Постройте задачу, в которой вы рассчитываете время, необходимое ей, чтобы вернуться, бросая все пакеты за один раз, а не бросая их по одному. Среди факторов, которые следует учитывать, — задействованные массы, сила, которую она может воздействовать на пакеты на некотором расстоянии, и расстояние до корабля.
  12. Постройте свою проблему. Рассмотрим артиллерийский снаряд, поражающий броню.Постройте задачу, в которой вы найдете силу, прилагаемую снарядом к пластине. Следует учитывать массу и скорость снаряда, а также расстояние, на котором его скорость уменьшается. Ваш инструктор может также пожелать, чтобы вы рассмотрели относительные преимущества обедненного урана по сравнению со свинцовыми снарядами, исходя из большей плотности урана.

Избранные решения проблем и упражнения

1. 39,2 м / с2

3. 4.16 × 10 3 м / с

5.Сила, необходимая для придания небольшой массе Δm ускорения a Δ м составляет F = Δ ma Δ м . Для ускорения этой массы за небольшой промежуток времени Δ t на скорости v e требуется v e = a Δ м Δ t , поэтому [латекс] F = v _ {\ text {e}} \ frac {\ Delta {m}} {\ Delta {t}} \\ [/ latex]. По третьему закону Ньютона эта сила равна по величине силе тяги, действующей на ракету, поэтому [latex] F _ {\ text {thust}} = v _ {\ text {e}} \ frac {\ Delta {m}} {\ Delta {t}} \\ [/ latex], где все величины положительны.Применение второго закона Ньютона к ракете дает F тягу — mg = ma ⇒ [latex] \ displaystyle {a} = \ frac {v _ {\ text {e}}} {m} \ frac {\ Delta {m }} {\ Delta {t}} — г \\ [/ latex], где м — масса ракеты и несгоревшего топлива.

Команда НАСА заявляет, что космический двигатель «невозможен» — узнайте факты

После многих лет спекуляций независимая исследовательская группа из Космического центра Джонсона НАСА достигла рубежа, который многие эксперты считали невозможным. На этой неделе команда официально опубликовала свои экспериментальные данные об электромагнитной двигательной установке, которая может приводить космический корабль в движение через пустоту — без использования какого-либо топлива.

По словам исследователей, электромагнитный привод или EmDrive преобразует электричество в тягу, просто отражая микроволны в закрытой полости. Теоретически такой легкий двигатель мог бы однажды отправить космический корабль на Марс всего за 70 дней. (Узнайте, почему Илон Маск считает, что к 2060-м годам на Марсе может жить миллион человек.) не уверен, как это работает на самом деле.Предыдущие сообщения о двигателе были встречены с огромной долей скептицизма, и многие физики относили EmDrive к миру псевдонауки.

Теперь, однако, последнее исследование прошло тщательную проверку независимых ученых, которая предполагает, что EmDrive действительно работает. Это начало революции в космических путешествиях или еще один фальстарт для «невозможного» двигателя космического корабля?

Что такое EmDrive?

Впервые предложенный почти 20 лет назад британским ученым Роджером Шоуером, это воплощение EmDrive было разработано и испытано инженерами Лаборатории перспективных исследований физики движения НАСА, неофициально известной как Eagleworks.

Проще говоря, Eagleworks EmDrive генерирует тягу, отражая электромагнитную энергию (в данном случае микроволновые фотоны) в закрытой конусообразной камере. Когда эти фотоны сталкиваются со стенками камеры, они каким-то образом продвигают устройство вперед, несмотря на то, что из камеры ничего не выходит. Напротив, ионные двигатели, которые сейчас используются на некоторых космических кораблях НАСА, создают тягу за счет ионизации топлива, часто ксенона, и испускания пучков заряженных атомов.

Что это означает, если EmDrive выдержит дальнейшую проверку, так это то, что будущие транспортные средства могут мчаться в космосе без необходимости нести буквально тонны топлива.В космических путешествиях очень важно оставаться налегке для быстрых и экономичных путешествий на большие расстояния.

Почему этот двигатель нарушает законы физики?

Еще в 1687 году сэр Исаак Ньютон опубликовал три закона движения, которые легли в основу классической механики. За прошедшие три столетия эти законы проверялись и проверялись снова и снова. (См. Также «Утраченный рецепт алхимии Исаака Ньютона, открытый заново».)

Проблема в том, что EmDrive нарушает третий закон Ньютона, который гласит, что для каждого действия существует равная и противоположная реакция.Этот принцип объясняет, например, почему каноэ скользит вперед, когда кто-то гребет. Сила, прикладываемая при движении весла по воде, толкает каноэ в противоположном направлении. Именно поэтому реактивные двигатели создают тягу: когда двигатель выбрасывает горячие газы назад, самолет движется вперед.

Как ни странно, EmDrive вообще ничего не выталкивает, и это не имеет смысла в свете третьего закона Ньютона или другого принципа классической механики — сохранения количества движения. Если EmDrive движется вперед, ничего не выталкивая из спины, тогда нет противодействующей силы, объясняющей толчок.Это немного похоже на утверждение, что человек в машине может толкнуть ее вперед, неоднократно нажимая на руль, или что экипаж космического корабля может доставить корабль к месту назначения, просто толкая стены.

Кто-нибудь пробовал раньше тестировать?

В 2014 году группа Eagleworks произвела фурор, когда объявила результаты первых тестов, свидетельствующие о том, что ЭМ двигатель действительно работает. С тех пор группа тестировала EmDrive во все более жестких условиях, включая последние эксперименты.

Другие группы также разработали и протестировали различные версии EmDrive. Помимо экспериментов, проводимых учеными из США, Европы и Китая, существует сообщество мастеров DIY EmDrivers, которые создают и тестируют свои собственные невозможные физические движки. Но никто не мог окончательно сказать, что такой привод работал, как описано. (Давайте будем честными: физики не любят, казалось бы, чудесных изобретений.)

Так что же теперь изменилось?

Команда NASA, создавшая EmDrive, опубликовала результаты своих экспериментов в рецензируемом журнале.Хотя экспертная оценка не гарантирует достоверности вывода или наблюдения, она указывает на то, что по крайней мере несколько независимых ученых просмотрели экспериментальную установку, результаты и интерпретацию и сочли все это разумным.

В этой статье команда описывает, как они тестировали EmDrive почти в вакууме, аналогичном тому, с которым он столкнется в космосе. Ученые поместили двигатель на устройство, называемое торсионным маятником, запустили его и определили, сколько тяги он создает, исходя из того, насколько сильно он двигался.По оценкам авторов, EmDrive способен производить 1,2 миллиньютона на киловатт энергии.

Это не большая тяга по сравнению с более традиционными двигателями, но это далеко не так незначительно, учитывая полностью бестопливную установку. И чтобы представить это в перспективе, легкие паруса и другие связанные с ними технологии, приводимые в движение фотонами, генерируют лишь часть этой тяги, от 3,33 до 6,67 микроньютон на киловатт.

Раньше одной из основных критических замечаний в адрес EmDrive было то, что он нагревался во время активации, что, по мнению некоторых ученых, могло нагревать окружающий воздух и создавать тягу.Тестирование устройства в вакууме сняло некоторые из этих критических замечаний, хотя есть еще множество предостережений, которые необходимо устранить.

ОК. Как такое возможно?

Перво-наперво: до сих пор неясно, действительно ли EmDrive создает тягу, и это утверждение потребует дополнительной проверки. Но люди уже обсуждают, как может работать привод.

Команда Eagleworks, которая тестировала EmDrive, считает, что микроволновые фотоны сталкиваются с «виртуальной плазмой квантового вакуума» или бурлящим морем частиц, которые то появляются, то исчезают на квантовом уровне.Проблема в том, что нет никаких доказательств того, что квантово-вакуумная виртуальная плазма вообще существует, — говорит физик Калифорнийского технологического института Шон Кэрролл. По его словам, квантовый вакуум существует, но он не генерирует плазму, которую можно было бы прижать.

В своей статье команда Eagleworks обращается к идее, называемой теорией пилотной волны, для описания того, как квантовый вакуум может быть использован для создания тяги, отмечая при этом, что такие интерпретации «не являются доминирующим взглядом на физику сегодня».

Майк Маккаллох, физик из Плимутского университета, утверждает, что EmDrive является доказательством новой теории инерции, которая включает нечто, называемое излучением Унру, разновидностью тепла, испытываемого ускоряющимися объектами.По его словам, поскольку широкий и узкий концы конуса EmDrive допускают разные длины волн излучения Унру, инерция фотонов внутри полости должна изменяться, когда они отскакивают назад и вперед, что должно создавать тягу для сохранения импульса.

Но модель Маккалоха предполагает, что излучение Унру реально — это не было экспериментально подтверждено — а также предполагает, что скорость света изменяется в полости EmDrive, что нарушает специальную теорию относительности Эйнштейна, по словам физика Рочестерского технологического института Брайана. Коберлейн.

Также возможно, что часть энергии, генерируемой при ускорении тела, накапливается в самом теле, говоря очень и очень просто — здесь также участвуют гравитационные взаимодействия и кратковременные колебания инерционной массы. Это могло бы объяснить, как корабль движется в космосе, не нарушая закон сохранения количества движения, говорит физик Джим Вудворд, предложивший в 1990 году так называемую теорию эффекта Маха.

Может быть, это все еще чушь?

Конечно. Существует долгая история открытий, которые, казалось бы, противоречат законам физики (нейтрино со скоростью быстрее света, кто-нибудь?), Которые в конечном итоге оказались жертвами ошибочных экспериментов.

В этой статье авторы идентифицируют и обсуждают девять потенциальных источников экспериментальных ошибок, включая нежелательные воздушные потоки, утечку электромагнитного излучения и магнитные взаимодействия. Не все из них можно полностью исключить, и определенно необходимы дополнительные эксперименты… возможно, в следующий раз в космосе.

Чем отличается двигатель реактивного самолета от ракеты? | Ребята из науки

Чем отличается двигатель реактивного самолета от ракеты?

Ноябрь 2002 г.

В сентябрьской колонке мы рассказали, как ракета работает в открытом космосе, где нет воздуха.Люди обычно считают, что ракета должна толкать воздух, чтобы ракета двигалась вперед, но это не так. Вкратце, ракета работает благодаря третьему закону Ньютона, который гласит, что для каждого действия существует равное и противоположное противодействие. При сгорании топлива образуются газы под высоким давлением, которые выходят из выхлопного сопла и толкают ракету вперед. Когда газы выходят из ракеты, сила реакции (тяга) толкает ракету, заставляя ее двигаться вперед. Чем быстрее из ракеты удаляются газы, тем больше тяга.Подумайте о том, как садовый шланг создает силу, отталкивающую шланг, когда из него брызгает вода.

Фактически, реактивные двигатели и ракеты работают на одном общем физическом принципе. Оба выбрасывают топливо обратно. Импульс, сообщаемый этому выхлопу, равен импульсу, полученному транспортным средством, таким образом заставляя транспортное средство двигаться вперед. Одно различие между ракетами и реактивными двигателями заключается в типе топлива, которое они сжигают. Реактивные двигатели — это воздуховоды. Они забирают воздух (который содержит кислород, необходимый для сгорания), смешивают его с топливом, сжигают его для повышения давления и выпускают отработавшие газы обратно с высокой скоростью.Этот высокоскоростной выброс массы продвигает самолет вперед. Ракеты делают почти то же самое, за двумя исключениями. В отличие от самолетов, они несут с собой собственный кислород, а у ракеты нет крыльев, которые увеличивают подъемную силу.

На космическом шаттле вы заметили оранжевый резервуар, который на самом деле содержит отдельные резервуары с водородом и кислородом. Эти два ингредиента смешиваются в жидкостном ракетном двигателе, сгорают и выбрасываются из сопла. Белая твердотопливная ракета с каждой стороны содержит химическую смесь, в которой окислитель является частью топлива.Ракетное топливо может гореть без внешнего кислорода. Кстати, если ракета на твердом топливе загорелась, ее нельзя выключить. В реактивных двигателях должен быть кислород из воздуха.

Еще одно отличие состоит в том, что у реактивных самолетов есть крылья для подъема, а у ракет — нет. Плотность воздуха и скорость самолета влияют на подъемную силу крыльев. У ракет подъемная сила (тяга) обеспечивается исключительно выхлопными газами.

Следовательно, ракета может лететь в вакууме космоса, лишенного воздуха, а реактивный двигатель — нет.У реактивного самолета есть потолок, выше которого он не может летать из-за недостатка воздуха. Реактивный двигатель должен иметь возможность «дышать», чтобы функционировать. Ракетное топливо значительно эффективнее реактивного топлива, а ракеты обычно более мощные. Однако ракета обычно тяжелее, потому что она должна нести с собой весь свой окислитель.

Реактивный двигатель

Squid может улучшить дизайн подводных роботов, транспортных средств

Из журнала: Physics of Fluids

Ссылка на статью: Импульсная реактивная тяга пловца, вдохновленного кальмарами, при высоком числе Рейнольдса
DOI: 10.1063 / 5.0027992

ВАШИНГТОН, 3 ноября 2020 г. — Кальмары и другие головоногие моллюски используют форму реактивного движения, которая недостаточно изучена, особенно когда речь идет об их гидродинамике в условиях турбулентного потока. Раскрытие их секретов может помочь создать новые конструкции для подводных роботов и транспортных средств, которые должны работать в этой среде.

Развитие завихренности в неустойчивость, нарушающую симметрию. ИСПОЛЬЗОВАНИЕ: Ян Ло

Исследователи из Шотландии, США.С. и Китай изучают фундаментальный механизм импульсной реактивной тяги кальмаров. В разделе Physics of Fluids от AIP Publishing группа описывает численное исследование реактивного движения головоногих моллюсков с турбулентным потоком, рассматриваемым впервые. Среди своих открытий они обнаружили, что производство тяги и эффективность недооцениваются в ламинарных или нетурбулентных потоках.

Модель для этого исследования — двухмерный пловец, похожий на кальмара, который имеет гибкое мантийное тело с барокамерой и соплом, которое служит для входа и выхода воды.На гибкую мантийную поверхность модели воздействует внешняя сила, имитирующая сокращение мускулов кальмара.

«В результате внутренний объем тела уменьшается, и вода внутри камеры выбрасывается, образуя струйный поток», — сказал Ян Луо, один из авторов и научный сотрудник Университета Стратклайд в Глазго, Шотландия. «Кальмар продвигается вперед сильной струей в противоположном направлении, затем мантия автоматически надувается в результате накопленной упругой энергии.Во время надувания мантии вода засасывается в камеру и выбрасывается во время следующего спуска мантии ».

По словам Луо, реактивная тяга

может быть более эффективной, если принять во внимание турбулентный поток. Группа также обнаружила нарушающую симметрию неустойчивость вихрей вокруг струи, которая испускает струи воды после нескольких непрерывных циклов струи.

«Это может помочь лучше понять, почему плавание рывком и берегом используется молодыми и взрослыми кальмарами, которые работают в турбулентных потоках чаще, чем вылупившиеся кальмары, которые работают в ламинарных потоках», — сказал Луо.

Помимо реактивного движения, молодые и взрослые кальмары также довольно часто полагаются на колебания плавников на голове при плавании. Группа обнаружила, что этот стиль взрыва и выбега может помочь кальмарам избежать нарушающей симметрию нестабильности окружающего вихря потока, которая может вызвать снижение тяги и эффективности.

«Результаты нашей работы о механизме нарушающей симметрию нестабильности служат руководством для проектирования подводных роботов и транспортных средств в стиле кальмаров», — сказал Луо.«Непрерывное реактивное движение может быть неблагоприятным, и необходимы конкретные меры для смягчения эффекта этой нестабильности при проектировании подводных аппаратов или движителей с реактивным движением за счет активного контроля деформации тела для изменения эволюции структуры внутренних вихрей».

Увидим ли мы в ближайшее время новые подводные лодки с реактивным двигателем?

«На данный момент сложно определить, — сказал Луо. «Но как относительно менее изученная форма подводной тяги, она выгодна с точки зрения простого механизма эффективного мгновенного покидания и высокой маневренности.Это делает его многообещающим для интеграции с типовой двигательной установкой для достижения маневренности по требованию ».

###

Для получения дополнительной информации:
Ларри Фрам
[email protected]
301-209-3090

Название статьи

Импульсно-реактивное движение пловца, вдохновленного кальмарами, при высоком числе Рейнольдса

Авторы

Ян Луо, Цин Сяо, Цян Чжу и Гуан Пан

Принадлежность автора

Университет Стратклайда; Калифорнийский университет в Сан-Диего; Северо-Западный политехнический университет

Безопасность | Стеклянная дверь

Мы получаем подозрительную активность от вас или кого-то, кто пользуется вашей интернет-сетью.Подождите, пока мы подтвердим, что вы настоящий человек. Ваш контент появится в ближайшее время. Если вы продолжаете видеть это сообщение, напишите нам чтобы сообщить нам, что у вас возникли проблемы.

Nous aider à garder Glassdoor sécurisée

Nous avons reçu des activités suspectes venant de quelqu’un utilisant votre réseau internet. Подвеска Veuillez Patient que nous vérifions que vous êtes une vraie personne. Вотре содержание apparaîtra bientôt. Si vous continuez à voir ce message, veuillez envoyer un электронная почта à pour nous informer du désagrément.

Unterstützen Sie uns beim Schutz von Glassdoor

Wir haben einige verdächtige Aktivitäten von Ihnen oder von jemandem, der in ihrem Интернет-Netzwerk angemeldet ist, festgestellt. Bitte warten Sie, während wir überprüfen, ob Sie ein Mensch und kein Bot sind. Ihr Inhalt wird в Kürze angezeigt. Wenn Sie weiterhin diese Meldung erhalten, informieren Sie uns darüber bitte по электронной почте: .

We hebben verdachte activiteiten waargenomen op Glassdoor van iemand of iemand die uw internet netwerk deelt.Een momentje geduld totdat, мы узнали, что u daadwerkelijk een persoon bent. Uw bijdrage zal spoedig te zien zijn. Als u deze melding blijft zien, электронная почта: om ons te laten weten dat uw проблема zich nog steeds voordoet.

Hemos estado detectando actividad sospechosa tuya o de alguien con quien compare tu red de Internet. Эспера mientras verificamos que eres una persona real. Tu contenido se mostrará en breve. Si Continúas recibiendo este mensaje, envía un correo electrónico a para informarnos de que tienes problemas.

Hemos estado percibiendo actividad sospechosa de ti o de alguien con quien compare tu red de Internet. Эспера mientras verificamos que eres una persona real. Tu contenido se mostrará en breve. Si Continúas recibiendo este mensaje, envía un correo electrónico a para hacernos saber que estás teniendo problemas.

Temos Recebido algumas atividades suspeitas de voiceê ou de alguém que esteja usando a mesma rede. Aguarde enquanto confirmamos que Você é Uma Pessoa de Verdade.Сеу контексто апаресера эм бреве. Caso продолжить Recebendo esta mensagem, envie um email para пункт нет informar sobre o проблема.

Abbiamo notato alcune attività sospette da parte tua o di una persona che condivide la tua rete Internet. Attendi mentre verifichiamo Che sei una persona reale. Il tuo contenuto verrà visualizzato a breve. Secontini visualizzare questo messaggio, invia un’e-mail all’indirizzo per informarci del проблема.

Пожалуйста, включите куки и перезагрузите страницу.

Это автоматический процесс. Ваш браузер в ближайшее время перенаправит вас на запрошенный контент.

Подождите до 5 секунд…

Перенаправление…

Заводское обозначение: CF-102 / 674414721bd800a5.

.