/Почему растения зеленого цвета – Почему растения зеленые? — Дикий Дикий Мир

Почему растения зеленого цвета – Почему растения зеленые? — Дикий Дикий Мир

Почему растения зеленые? — Дикий Дикий Мир

Если посмотреть на нашу планету из космоса, вся ее поверхность будет окрашена в 2 основных цвета: синий и зеленый. Синий — это моря и океаны, т.е. вода. Зеленый — это леса, луга и поля на которых растут различнейшие растения и все они окрашены в зеленый цвет. Почему происходит так, почему большинство растений имеют именно зеленый цвет?

Ответ кроется в крохотных пигментах, которые в очень большом количестве содержатся во всех растениях. Этим пигментом является — хлорофилл — вещество, поглощающее солнечный свет и вырабатывающее органические питательные вещества для растений.

Фотосинтез

Роль хлорофилла трудно переоценить, так как именно он является основой в процессе фотосинтеза — наверное, важнейшего процесса на нашей планете. Во время фотосинтеза молекулы хлорофилла совершают настоящее чудо — преобразование неорганических веществ в органические. Под воздействием солнечного света в пигментах происходит сложная химическая реакция, в результате которой вода и неорганические вещества, получаемые из корней растения преобразуются в органические питательные вещества (сахар, крахмал, белки, жиры, углеводы). Но самым важным моментом в фотосинтезе является поглощение углекислого газа и

выработка кислорода — жизненно необходимого вещества для подавляющего большинства живых существ на Земле.

Сам хлорофилл зеленого цвета, но растения выглядят зелеными не потому. Дело в том, что во время фотосинтеза пигменты хлорофилла поглощают свет только синего и красного спектров, в то время как зеленый отражается, вот поэтому мы и видим растения зелеными.

Долгое время ученые не могли понять почему растения не поглощают зеленый свет, ведь именно он находится в

пике энергетического спектра солнечного света. Оказалось, что эффективность фотосинтеза зависит не столько от общего количества света, сколько от энергии отдельных его спектров и количества фотонов (мельчайшая частичка света) содержащихся в них. Так наибольшим количеством фотонов обладает свет красного спектра, а фотоны синего спектра — самые богатые полезной энергией. Фотоны же зеленого спектра не выделяются ни количеством, ни качеством поэтому природа и решила не использовать их, чтобы не тратить силы зря.

Почему не все растения окрашены в зеленый цвет?

Дело в том, что во всех растениях кроме хлорофилла содержится еще целый ряд различных пигментов, которые могут поглощать и отражать совсем другие цвета спектра нежели зеленый пигмент. Так к примеру,

каротин поглощает отражает желто-красную часть спектра, из-за чего листья в которых содержаться меньше хлорофилла и больше каротина выглядят желтыми или красными. Антоциан наоборот активно поглощает зеленые лучи, а остальные отражает. Листья растений в которых преобладает антоциан (кротон, кордилина), могут быть окрашены во все цвета спектра кроме зеленого. Еще есть ксантозин, поглощающий все спектры за исключением желтого.

wildwildworld.net.ua

Почему растения зеленые — Libtime

  1. Главная
  2. Природа
  3. Почему растения зеленые
Елена Голец 2545 Почему растения зеленые? Такой вопрос долгое время ни у кого даже не возникал. Многим он показался бы даже праздным. В те времена, когда еще господствовали ненаучные представления, зеленый цвет растений часто объяснялся тем, что такой цвет приятен для человеческого глаза! Зеленые растения.

Зеленая окраска растений

Еще в недалеком прошлом даже некоторые ученые считали зеленую окраску растений случайным явлением. Один натуралист, современник Дарвина, утверждал, например, что зеленый цвет растения — такой же простой факт, как цвет минералов и, очевидно, никакого биологического значения не имеет.

Зеленый цвет — важное физиологическое явление

Совершенно по-иному смотрел на это еще молодой тогда русский ученый
Климент Аркадьевич Тимирязев
. Он пришел к выводу, что зеленый цвет — самое важное физиологическое явление, и вопрос о причине зеленой окраски растений сделал одной из главных тем своих научных исследований.
В зеленом цвете, в этом самом широко распространенном свойстве растения лежит ключ к пониманию, главной космической роли растения в природе.
К. А. Тимирязев Тимирязев считал, что процесс жизни зеленого растения должен быть неизбежно подчинен общему закону природы —
закону сохранения энергии
, открытому М. В. Ломоносовым.

Фотосинтез

Блестящие по замыслу и точные по технике выполнения опыты Тимирязева по физиологии зеленого растения полностью подтвердили правильность его взглядов. Он доказал, что образование органического вещества из неорганического при участии света и хлорофилла есть действительно материальный процесс преобразования одного вида энергии (свет солнца) в другой вид (органическое вещество). Этот процесс получил название фотосинтеза, что значит создание светом. Тимирязев выяснил также сложную природу хлорофилла и доказал прямую зависимость между составными цветами солнечного спектра (красным, оранжевым, желтым, зеленым, голубым, синим и фиолетовым) и активностью их участия в образовании органического вещества. Хлорофилл растительной клетки. Он установил, что в фотосинтезе наиболее энергично участвует
красная часть спектра
, несущая наибольшее количество энергии солнечного луча. Значит, органические вещества — это по преимуществу преобразованная энергия красной части солнечного спектра — консервы Солнца, как образно назвал их Тимирязев. Зеленая же часть спектра, совершенно не участвующая в образовании органического вещества, полностью отражается хлорофиллом клетки и, попадая в человеческий глаз, дает ощущение зеленого цвета. Именно поэтому растения и имеют зеленую окраску. В преобразующем действии фотосинтеза на всю нашу планету заключается великая космическая роль зеленых растений: ведь только органическое вещество, возникающее в зеленом растении, представляет действенную форму связи между Землей и Солнцем. Академик
В. Л. Комаров
, исследовавший растительный мир Земли, писал об этой связи:
Поскольку солнечный луч встречает на Земле воздух, воду и камень, он мимолетный гость земной поверхности. Его сохранить нельзя, и процесс лучеиспускания, охлаждения, заметный особенно в ночное время, быстро уносит его в мировое пространство. Лишь поскольку луч Солнца встречает на своем пути зеленое растение, постольку путь его на Земле становится продолжительным, с постоянным переходом из деятельного, динамического состояния в покоящееся, и обратно.
Замечательное описание приключений солнечного луча, энергия которого, перейдя в органическое вещество, совершает поразительные изменения на нашей земле и осуществляет свою животворную космическую роль в сложных проявлениях жизни, дал К. А. Тимирязев.
Крахмал, превращаясь в р

libtime.ru

Почему растения зелёные?

Мир флоры разнообразен. Нас окружают цветы, кустарники, деревья, травы множества оттенков, но преобладающим в цветовой гамме является зеленый. Но почему растения зеленые?

Причины зеленого цвета

Растения по праву называют легкими планеты. Перерабатывая вредный углекислый газ, они дарят человечеству и окружающей среде кислород. Этот процесс носит название фотосинтез, а пигмент отвечающий за него – хлорофилл.

Именно благодаря молекулам хлорофилла неорганические вещества превращаются в органические. Самым важным из них является кислород, но в то же время в процессе фотосинтеза растениями вырабатываются белки, сахар, углеводы, жиры, крахмал.

Со школьной программы известно, что началом химической реакции является попадание на растение солнечного или искусственного света. Хлорофиллом поглощаются не все световые волны, а лишь определенной длины. Наиболее быстро это происходит от красных до сине-фиолетовых.

Зеленый же растениями не поглощается, а отражается. Именно это видно глазам человека, следовательно, представители флоры вокруг нас имеют зеленый цвет.

Почему именно зеленый цвет?

Достаточно длительное время ученые бились над вопросом: почему зеленый спектр отражается? В итоге выяснилось, что природа просто не тратит силы зря, потому как этот мельчайшие частички света – фото этого цвета не обладают никакими выдающимися качествами, тогда как синие фотоны – источники полезной энергии, в красных содержится наибольшее количество. Как тут не вспомнить, что ничего в природе не делается просто так.

Откуда в растениях яркие краски?

Биологи с уверенностью говорят о том, что произошли растения от чего-то, похожего на водоросли, а хлорофилл появился под воздействием эволюционных процессов.

В природе же другие цвета изменяются под воздействием света. Когда его становится меньше, листья и стебли начинают отмирать. Хлорофилл, отвечающий за яркий зеленый цвет, распадается. На смену ему приходят другие пигменты, отвечающие за яркие краски. Красные и желтые листья свидетельствуют о том, что преобладающим стал каротин. За желтый цвет еще отвечает пигмент ксантозин. Если в растении невозможно найти зеленый цвет, в том «вина» антоцианов.

Труды ученых о фотосинтезе и хлорофилле

Как открыли фотосинтез?

Открытие процесса преобразования углекислого газа в кислород произошло случайно и было сделано английским химиком Джозефом Пристли. Ученый искал способ очистить «испорченный воздух» (так называли в то время углекислый газ). И в ходе экспериментов под стеклянный колпак, вместо мыши и свечи, было отправлено растение, которое, вопреки ожиданиям, выжило. Следующим шагом стало подсаживание к цветку в горшке мыши. И чудо произошло – животное не погибло от удушья. Так был сделан вывод о возможности преобразования углекислого газа в кислород.

Большое внимание и много времени роли хлорофила и процессу фотосинтеза посвятил русский естествоиспытатель Климент Аркадьевич Тимирязев. Его главные научные заслуги:

  • доказательство распространения закона сохранения энергии на процесс фотосинтеза, что отрицалось западными исследователями;
  • установления факта участия в фотосинтезе только поглощаемых растением световых лучей.

Работы К. А. Тимирязева заложили прочную основу для учения о превращении воды и углекислого газа в органические полезные вещества под воздействием света. Сейчас наука шагнула далеко вперед, некоторые исследования претерпели изменения (например, факт разложения световым лучом не углекислого газа, а воды), но можно с уверенностью говорить том, что именно им были изучены азы. Ознакомиться с трудом ученого позволит книга «Жизнь растения» – это увлекательные и познавательные факты о питании, росте, развитии и размножении зеленых растений.

Фотосинтез и хлорофил находятся в тесной связи, если говорить о том, почему растения именно зеленого цвета. Световой луч имеет несколько спектров, одни из которых поглощаются и участвуют в химическом процессе преобразования углекислого газа в кислород. Зеленый же отражается и отдает свой цвет листьям и стеблям – и это видно человеческому взору.

labuda.blog

Почему растения выбрали зелёный цвет?: my19edwin — LiveJournal


Года в три-четыре каждый ребёнок задаёт простой вопрос: «почему трава зелёная?» В ответ можно услышать всё, что угодно – от «не приставай, мне некогда» до научно-популярной версии о фотосинтезе и зелёном хлорофилле. Но разве это ответ? Можете ли вы объяснить себе, почему трава всё-таки зелёная – а не розовая, оранжевая или цвета индиго? Конечно, вы скажете: потому что в хлоропластах растений содержится хлор – а в кристаллической форме он зелёный. Неплохо. Ну а дальше-то что? Почему в ходе эволюции выбор пал на него, а не на периодический элемент иного цвета? Вот вам и задачка… Но в истории развития жизни на Земле не было случайностей.


Доступным языком — о физике

Даже самые далёкие от точных наук люди знают, что жизнь на планете обязана своим существованием солнечным лучам. Глубоко в недрах нашей звезды происходят ядерные реакции синтеза гелия из водорода. В результате распада высвобождаются фотоны (кванты света). Они проявляют свойства волн и частиц одновременно: эти электромагнитные импульсы излучаются «порциями», однако не имеют ни массы, ни заряда. Их роль в нашей жизни куда важнее: они обеспечивают взаимодействие между электрическими зарядами элементарных частиц, составляющих атомы, затем молекулы и, наконец, клетки живого организма.

Фотоны могут жить только в движении со скоростью света в вакууме. Рождаясь в солнечном ядре, они сперва несут в себе колоссальный импульс. Но чтобы сквозь солнечную мантию пробиться к поверхности звезды, эти частицы тратят почти миллион лет! Поэтому не смотря на то, что с этого момента свет преодолевает расстояние до Земли всего за 8,3 минуты, мы наслаждаемся тёплыми лучами, котрые ждали встречи с нами ещё в середины Плейстоцена.

Так вот: в целом импульс фотонов капитально уменьшается ещё до прощания с родной звездой, а при прохождении земной атмосферы кванты света уже ожидают новые препятствия. В озоновом слое фотоны сталкиваются с молекулами, из-за чего изменяются импульс и длина волн – то есть, свет разделяется на спектр (дисперсия). Самые опасные для земных обитателей длины волн озоновый слой не пропускает — включая большую часть ультрафиолета. Поэтому мы различаем цвета радуги начиная от фиолетового и заканчивая красным. Иинфракрасную длину волны мы всё ещё ощущаем как тепло, а слабое микроволновое и другие излучения нас и вовсе не беспокоят.

Каждому из видимых цветов соответствует длина волны света, которую отражают материальные объекты (все остальные им поглощаются). Казалось бы, ничего загадочного: растения используют хлорофилл, который поглощает все цвета кроме зелёного. Но всё наоборот: сначала растения сознательно выбрали цвет, а потом подобрали к нему нужный «наполнитель». Здесь нам придётся обратиться к богатому опыту агрономов и ботаников. Многочисленные опыты и исследования раскрывают некоторые секреты растений, о которых почему-то не рассказывают в школе на уроках биологии.

Фотоны и растения

Вообще для фотосинтеза подходят волны любой длины, включая невидимые нашему глазу. Современные растения приспособились использовать излучение в диапазоне от 400 (фиолетовый) до 700 нм (красный). Причём для нормального функционирования растений (рост, цветение, плодоношение, запасание полезных веществ) необходимо присутствие в спектре всех этих цветов в определённых пропорциях. Это объясняется тем, что некоторые химические реакции могут начаться при облучении вещества светом низкой или средней частоты (тёплые цвета радуги), а другим для инициирования реакции требуется свет с частотой выше определённого порогового значения (холодные цвета).

Если зелёный свет может передать достаточно большие импульсы – какой же смысл растениям от него отказываться? Однако факт есть факт: 80-90% энергии растения вырабатывают за счёт поглощения синих и красных фотонов. Синие при этом более интенсивные, зато красных – подавляющее большинство. Остальные 10-20% приходятся на другие цвета, а сам зелёный в качестве «основного наряда» был выбран, очевидно, за свою высокую проникающую способность: в то время как синий и красный почти полностью поглощаются верхними ярусами листьев, зелёный способен проникать сквозь них и «вдыхать жизнь» в нижние ярусы, какими бы густыми они ни были. Это значит, что первые водоросли, которые только выбирались на сушу, уже планировали своё дальнейшее завоевание континентов и превращение в многоярусные леса – от мхов и трав до кустарников и деревьев.

Где же гарантия, что растения просто отражают или пропускают сквозь себя большую часть зелёного света? – Её и не будет, ведь и это не совсем правда. Это всё человеческое зрение, которое нельзя назвать самым надёжным (в сравнении с некоторыми животными), даёт нам «зелёную картинку». Этот цвет мы видим однородным из-за несовершенства своего зрительного анализатора. На самом же деле это наложение световых волн разной длины – преимущественно жёлтых и синих. А как же иначе? Часть цветных пигментов (каротин, антохлор, ксантофилл) специализируются на поглощении синих фотонов, отражая преломлённые лучи в красновато-жёлтом «формате». Другие пигменты (хлорофил и антоцианы) поглощают красноватые фотоны, отражая лучи приблизительно цвета морской волны. Накладываясь, они образуют изумрудный (по крайней мере, так его видят люди).

По мере сокращения светового дня и изменения угла освещённости (что влияет на преломление света ещё в слоях атмосферы), фотонов с большой частотой (и маленькой длиной волны) становится всё меньше. Некоторое время растения пытаются приспособиться к этому и переключают внимание исключительно на сбор «высококалорийных» порций света. Поглощая синие и зелёные фотоны, листья растений начинают отражать соответственно жёлтый или красный цвета. Когда синих фотонов становится критически мало, растения сбрасывают листву.

Какими могут быть растения с других планет?

Как вы догадываетесь, всё зависит от особенностей светового спектра, который формируется во время прохождения атмосферы или жидкой среды. Если кислорода и озонового слоя на планете нет, то от жгучего ультрафиолета растения может спасти только толща воды – они, очевидно, будут поглощать максимум инфракрасного излучения, а сами приобретут тёмно-красный цвет (на нашей планете так поступает пурпурная аноксигенная бактерия). Обитаемый спутник яркой звезды класса F должен получать очень много света, поэтому растения на нём отражали бы синий цвет — во избежание перегрева. А планета, освещаемая тусклой звездой класса М («красный карлик»), должна испытывать дефицит света – и, чтобы максимально использовать его, растения наверняка сделают выбор в пользу чёрной окраски. Да вы представьте только себе эти три фиолетовых глаза, полных надежды: «Мама-мама, а почему трава чёрная?»

Опубликовал здесь

my19edwin.livejournal.com

GISMETEO.RU: Почему не все растения зеленые? — События

Представьте себе место на Земле, где океаны полны фиолетовых водорослей, а леса встречают переливами синих растений. И это вовсе не сцена из научно-фантастического романа, а реальность прошлого и настоящего.

Принято считать, что растительная жизнь на нашей планете обязательно должна быть зеленой: растения производят энергию с помощью хлоропластов, хлоропласты состоят из хлорофилла, а хлорофилл — зеленый. Однако не все так однозначно.

961948c2.jpg

Begonia pavonina. © Clivid | Flickr

Исследования показали, что самые ранние фотосинтезирующие организмы были фиолетового цвета, потому что полагались на фотосинтезирующие химические вещества, которые поглощали разные по длине световые волны. И, оказывается, мерцающие синие растения все еще существуют: Begonia pavonina, или Павлинья бегония, обитает в туманных тропических лесах Юго-Восточной Азии, где редко увидишь солнечные лучи. Как выяснили ученые, выживать в условиях низкой освещенности бегонии помогают радужные лазурные листья.

Необычная окраска происходит от фотосинтезирующих структур, называемых иридопластами, рассказала соавтор исследования Хизер Уитни из Бристольского университета в Англии. Как и хлоропласты, эти структуры обеспечивают клеточные механизмы для фотосинтеза. Они поглощают свет и используют его, чтобы синтезировать молекулы, которые хранят энергию. При сборе света они также полагаются на хлорофилл — пигмент, который поглощает красный и синий свет и отражает зеленый, придавая растениям их типичный вид.

Но когда Уитни и ее коллеги изучили клетки B. pavonina под микроскопом, то заметили, что иридопласты имеют очень странную форму. Они были расположены друг на друге, мембрана поверх мембраны, и разделены тонким слоем жидкости, почти как горка блинов, политых кленовым сиропом.

Эффект аналогичен тому, что происходит, когда вы видите масло плавающим на поверхности воды. «Свет, проходящий сквозь такую структуру, слегка преломляется, что называется интерференцией, — объясняет Уитни. — Так получается этот радужный отблеск».

Мерцающие голубые бегонии свидетельствуют о том, что растения могут адаптироваться к освещенности за счет структурных и химических изменений. Это наслоение иридопластов позволяет структуре поглощать длинноволновый свет (красный и зеленый), доступный в темноте под пологом леса. Синий свет при этом отражается, создавая удивительное сияние.

Ученые также считают, что это наслоение замедляет фотосинтезирующие реакции, способствуя еще более эффективному накоплению энергии. По словам Уитни и ее коллег, это открытие доказывает невероятную универсальность растений. Когда они оказываются в неблагоприятных условиях, им приходится искать оригинальные пути к адаптации в новом мире. И кто знает, к каким еще трюкам могут прибегать растения, чтобы выжить.

Исследование опубликовано в журнале Nature Plants.

www.gismeteo.ru

Почему растения зелёные « Сто тысяч почему

Зелёная музыка

Растения имеют зелёный цвет благодаря хлорофиллу.

А что такое хлорофилл?

Хлорофилл

Хлорофилл (от греческого chloros — зеленый и phyllon — лист) –  зеленый пигмент растений, с помощью которого они улавливают энергию солнечного света и осуществляют фотосинтез. В высших растениях и водорослях хлорофилл локализован в особых клеточных структурах — хлоропластaх и связан с белками и липидами этих структур. Хлоропласты высших растений и зеленых водорослей содержат два типа хлорофиллов, близких по структуре молекул, — хлорофиллы a и b.

Структурная формула хлорофилла

Другие фотосинтезирующие водоросли и фотосинтезирующие бактерии имеют иной набор пигментов. Например, бурые и диатомовые водоросли, криптомонады и динофлагелляты содержат хлорофиллы a и c, красные водоросли — хлорофиллы а и d. Следует отметить, что реальность существования хлорофилла d в красных водорослях оспаривается некоторыми исследователями, которые полагают, что он является продуктом деградации хлорофилла а. В настоящее время достоверно установлено, что хлорофилл d — основной пигмент некоторых фотосинтезирующих прокариотов. Среди прокариотов цианобактерии (сине-зеленые водоросли) содержат только хлорофилл a, прохлорофитные бактерии — хлорофиллы a, b или c. Другие бактерии содержат аналоги хлорофилла — бактериохлорофиллы, которые локализованы в хлоросомах и хроматофорах. Известны бактериохлорофиллы а, b, c, d, e и g. Основу молекулы всех хлорофиллов составляет магниевый комплекс порфиринового макроцикла, к которому присоединен высокомолекулярный спирт, обладающий гидрофобными свойствами, который придает хлорофиллам способность встраиваться в липидный слой фотосинтетических мембран. Главная роль в улавливании и трансформации солнечной энергии в биосфере принадлежит хлорофиллу a.

Фотосинтез

Схема фотосинтеза

Хлорофилл – это зелёное вещество растения. При его участии осуществляется процесс фотосинтеза. С его помощью вырабатываются важные питательные вещества: крахмал, сахар, белок – строительный материал любого живого организма, в том числе и человека, животных. 

Фотосинтез – уникальный физико-химический процесс, осуществляемый на Земле всеми зелеными растениями и некоторыми бактериями и обеспечивающий преобразование электромагнитной энергии солнечных лучей в энергию химических связей различных органических соединений. Основа фотосинтеза — последовательная цепь окислительно-восстановительных реакций, в ходе которых осуществляется перенос электронов от донора — восстановителя (вода, водород) к акцептору — окислителю (СО2, ацетат) с образованием восстановленных соединений (углеводов) и выделением O2, если окисляется вода.

Фотосинтез играет ведущую роль в биосферных процессах, приводя в глобальных масштабах к образованию органического вещества из неорганического. Фотосинтезирующие организмы, используя солнечную энергию в реакциях фотосинтеза, осуществляют связь жизни на Земле со Вселенной и определяют в конечном итоге всю ее сложность и разнообразие. Гетеротрофные организмы — животные, грибы, большинство бактерий, а также бесхлорофилльные растения и водоросли — обязаны своим существованием автотрофным организмам — растениям-фотосинтетикам, создающим на Земле органическое вещество и восполняющим убыль кислорода в атмосфере. Человечество все более осознает очевидную истину, впервые научно обоснованную К.А. Тимирязевым и В.И. Вернадским: экологическое благополучие биосферы и существование самого человечества зависит от состояния растительного покрова нашей планеты.

Растения вырабатывают питательные вещества из углекислоты и воды. Углекислота берётся им из воздуха, а вода – из собственных клеток.

Без солнца растение не может развиваться. Оно поглощает солнечную энергию, но белый солнечный цвет преломляется в спектр, однако растение поглощает солнечный свет выборочно, по цветам. Это красная и фиолетовая часть спектра, которая перерабатывается хлорофиллами.

А вот каратиноиды (другие молекулы растения) поглощают сине-зелёный цвет и отдают свою энергию хлорофиллам, которым для фотосинтеза зелёный цвет не нужен – вот поэтому он отражается от листьев. Именно этот отражённый цвет мы и видим.

Когда растение для фотосинтеза поглощает углекислоту, оно, переработав её, выделяет в воздух кислород, который необходим  людям и животным для их жизнедеятельности. Без кислорода мы не прожили бы и нескольких минут.

Зелёные растения пополняют воздух кислородом и очищают его от излишней кислоты.

А вот такими были бы растения без зелёных хлорофиллов. При увядании молекулы хлорофилла  разрушаются,  в растениях начинают преобладать другие цвета спектра.

…без зелёных хлорофиллов

Похожие статьи:

  1. Почему листья желтеют
  2. Почему «Красная книга» – красная?

100-000-pochemu.info

Почему растения зеленые, а не синие или красные? — OneKu

Содержание статьи:

Большинство растений на планете Земля зеленого цвета. Это бескрайние поля, луга, огромные леса. Очень часто от малышей можно услышать вопрос: «Мама, а почему растения зеленые?». Попробуем ответить на данный вопрос с точки зрения химии, физики и простого обывателя.

Почему листья растений зеленого цвета? Просто о сложном

Листва и трава на нашей планете бывают желтого цвета, красного, но в основном зеленого. Это происходит потому, что растения окрашивают крошечные пигменты. Они находятся в клетках каждой травинки и листочка. Одни из них придают растению красный цвет, другие – желтый, а третьи – зеленый. Самым распространенным из пигментов является хлорофилл — вещество, придающее растениям зеленый цвет.

Что такое хлорофилл и фотосинтез?

Вам будет интересно:Немощный — это какой? Толкование слова и синонимы

Листву и траву окрашивает пигмент, называемый хлорофилл (это вещество зеленого цвета, которое участвует в процессе фотосинтеза). В результате этого образуются питательные вещества, и вырабатывается кислород.

Благодаря свету солнца совершается сложный биохимический процесс, в результате которого неорганические вещества и вода, полученные растением из почвы, превращаются в органические (жиры, углеводы, белки, крахмал, сахар). Основное значение фотосинтеза в том, что растение поглощает углекислый газ и вырабатывает кислород, важный для жизни всех организмов на Земле.

Физика и химия зеленого света

Попробуем разобраться глубже в том, почему растения зеленые.

Ученые-физики объясняют расцветку всех предметов тем, насколько ими поглощается/отражается свет. Окружающие нас вещи имеют такой цвет, который ими отражается. Например, если предмет белого тона, значит, он отражает все цвета спектра. Если черного, то все оттенки поглощаются этим предметом. Белый солнечный свет состоит из семи цветов, которые получают все живые организмы, растения и неживые объекты. Трава и листва из всех тонов отражает только зеленый (он не нужен для процесса фотосинтеза) и вот почему все растения имеют такой оттенок. А пигмент хлорофилл добывает энергию для роста и питания из красного и синего спектра.

Ученые могут объяснить, почему большинство растений отражает зеленый свет, а не поглощает его. Каждый из цветов спектра имеет определенную энергию и число фотонов (крошечных частиц света). Для фотосинтеза важна именно эта энергия. Самое большое число фотонов содержится в красном цвете, тогда как синий владеет самой полезной энергией. Зеленые фотоны не отличаются ни энергией, ни полезностью, поэтому природа его и не использует.

С точки зрения химии все объясняется по-другому. Ученые считают, что окраска предметов зависит от концентрации некоторых металлов. Например, кровь красная из-за того, что гемоглобин в ней содержит железо. Почти вся растительность зеленого цвета, потому что в хлорофилле имеется магний. Самое интересное, что данная теория не имеет веских доказательств. Ученые пробовали заменить магний цинком, но, несмотря на это, растения оставались такими же зелеными.

Почему осенью листва желтеет?

Почему же осенью трава становится желтого цвета, листва сохнет и опадает? Это происходит из-за недостатка солнечного света. С началом осени дни становятся короче, прохладнее и темнее. Растения чутко реагируют на сокращение светового дня. Хлорофиллу недостает солнечного цвета, и он начинает разрушаться, зеленая окраска теряется, превращаясь в бурую, красную, желтую, багряную.

Почему не все растения зеленые?

Почему в природе, помимо зеленых, встречаются и растения прочих цветов? Потому что кроме хлорофилла, растения могут содержать и множество других пигментов. Например:

  • Антоциан – пигмент, который поглощает лучи зеленого света, а все остальные отражает. Листья, содержащие вещество могут иметь окраску любого цвета, за исключением зеленого.
  • Каротин – пигмент, отражающий желтую и красную палитру. Листья и травы, в которых количество каротина намного больше, чем хлорофилла, бывают красными или желтыми.
  • Ксантозин – вещество, поглощающее всю палитру цветов, кроме желтого. Соответственно листва, содержащая ксантозин – желтого оттенка.

Теперь и взрослому и ребенку станет понятно, почему растения зеленые. Каждый поймет важность процесса фотосинтеза, как растения получают питательные вещества и растут, и почему по осени они желтеют и увядают. Познавайте мир, это очень интересно!

Источник

1ku.ru