/Реактивное движение в природе: Реактивное движение в живой природе

Реактивное движение в природе: Реактивное движение в живой природе

Содержание

Реактивное движение в природе и технике. Физика. Реактивное движение в природе и в технике

Законы Ньютона позволяют объяснить очень важное механическое явление — реактивное движение . Так называют движение тела, возникающее при отделении от него с какой-либо скоростью некоторой его части.

Возьмем, например, детский резиновый шарик, надуем его и отпустим. Мы увидим, что, когда воздух начнет выходить из него в одну сторону, сам шарик полетит в другую. Это и есть реактивное движение.

По принципу реактивного движения передвигаются некоторые представители животного мира, например кальмары и осьминоги. Периодически выбрасывая вбираемую в себя воду, они способны развивать скорость до 60-70 км/ч. Аналогичным образом перемещаются медузы, каракатицы и некоторые другие животные.

Примеры реактивного движения можно обнаружить и в мире растений. Например, созревшие плоды «бешеного» огурца при самом легком прикосновении отскакивают от плодоножки и из отверстия, образовавшегося на месте отделившейся ножки, с силой выбрасывается горькая жидкость с семенами; сами огурцы при этом отлетают в противоположном направлении.

Реактивное движение, возникающее при выбросе воды, можно наблюдать на следующем опыте. Нальем воду в стеклянную воронку, соединенную с резиновой трубкой, имеющей Г-образный наконечник (рис. 20). Мы увидим, что, когда вода начнет выливаться из трубки, сама трубка придет в движение и отклонится в сторону, противоположную направлению вытекания воды.

На принципе реактивного движения основаны полеты ракет . Современная космическая ракета представляет собой очень сложный летательный аппарат, состоящий из сотен тысяч и миллионов деталей. Масса ракеты огромна. Она складывается из массы рабочего тела (т. е. раскаленных газов, образующихся в результате сгорания топлива и выбрасываемых в виде реактивной струи) и конечной или, как говорят, «сухой» массы ракеты, остающейся после выброса из ракеты рабочего тела.

«Сухая» масса ракеты, в свою очередь, состоит из массы конструкции (т. е. оболочки ракеты, ее двигателей и системы управления) и массы полезной нагрузки (т.е. научной аппаратуры, корпуса выводимого на орбиту космического аппарата, экипажа и системы жизнеобеспечения корабля).

По мере истечения рабочего тела освободившиеся баки, лишние части оболочки и т. д. начинают обременять ракету ненужным грузом, затрудняя ее разгон. Поэтому для достижения космических скоростей применяют составные (или многоступенчатые) ракеты (рис. 21). Сначала в таких ракетах работают лишь блоки первой ступени 1. Когда запасы топлива в них кончаются, они отделяются и включается вторая ступень 2; после исчерпания в ней топлива она также отделяется и включается третья ступень 3. Находящийся в головной части ракеты спутник или какой-либо другой космический аппарат укрыт головным обтекателем 4, обтекаемая форма которого способствует уменьшению сопротивления воздуха при полете ракеты в атмосфере Земли.

Когда реактивная газовая струя с большой скоростью выбрасывается из ракеты, сама ракета устремляется в противоположную сторону. Почему это происходит?

Согласно третьему закону Ньютона, сила F, с которой ракета действует на рабочее тело, равна по величине и противоположна по направлению силе F», с которой рабочее тело действует на корпус ракеты:

Сила F» (которую называют реактивной силой) и разгоняет ракету.

Из равенства (10.1) следует, что сообщаемый телу импульс равен произведению силы на время ее действия. Поэтому одинаковые силы, действующие в течение одного и того же времени, сообщают телам равные импульсы. В данном случае импульс m р v р, приобретаемый ракетой, должен пульсу m газ v газ выброшенных газов:

m р v р = m газ v газ

Отсюда следует, что скорость ракеты

Проанализируем полученное выражение. Мы видим, что скорость ракеты тем больше, чем больше скорость выбрасываемых газов и чем больше отношение массы рабочего тела (т. е. массы топлива) к конечной («сухой») массе ракеты.

Формула (12.2) является приближенной. В ней не учитывается, что по мере сгорания топлива масса летящей ракеты становится все меньше и меньше. Точная формула для скорости ракеты впервые была получена в 1897 г. К. Э. Циолковским и потому носит его имя.

Формула Циолковского позволяет рассчитать запасы топлива, необходимые для сообщения ракете заданной скорости. В таблице 3 приведены отношения начальной массы ракеты m0 к ее конечной массе m, соответствующие разным скоростям ракеты при скорости газовой струи (относительно ракеты) v = 4 км/с.

Например, для сообщения ракете скорости, превышающей скорость истечения газов в 4 раза (v р =16 км/с), необходимо, чтобы начальная масса ракеты (вместе с топливом) превосходила конечную («сухую») массу ракеты в 55 раз (m 0 /m = 55). Это означает, что львиную долю от всей массы ракеты на старте должна составлять именно масса топлива. Полезная же нагрузка по сравнению с ней должна иметь очень малую массу.

Важный вклад в развитие теории реактивного движения внес современник К. Э. Циолковского русский ученый И. В. Мещерский (1859-1935). Его именем названо уравнение движения тела с переменной массой.

1. Что такое реактивное движение? Приведите примеры. 2. В опыте, изображенном на рисунке 22, при вытекании воды через изогнутые трубки ведерко вращается в направлении, указанном стрелкой. Объясните явление. 3. От чего зависит скорость, приобретаемая ракетой после сгорания топлива?

Большое значение закон сохранения импульса имеет при рассмотрении реактивного движения.
Под реактивным движением понимают движение тела, возникающее при отделении некоторой его части с определенной скоростью относительно него, например при истечении продуктов сгорания из сопла реактивного летательного аппарата. При этом появляется так называемая реактивная сила , толкающая тело.
Особенность реактивной силы заключается в том, что она возникает в результате взаимодействия между собой частей самой системы без какого-либо взаимодействия с внешними телами.
В то время, как сила, сообщающая ускорение, например, пешеходу, кораблю или самолету, возникает только за счет взаимодействия этих тел с землей, водой или воздухом.

Так движение тела можно получить в результате вытекания струи жидкости или газа.

В природе реактивное движение присуще в основном живым организмам, обитающим в водной среде.


В технике реактивное движение используется на речном транспорте (водометные двигатели), в автомобилестроении (гоночные автомобили), в военном деле, в авиации и космонавтике.
Все современные скоростные самолеты оснащены реактивными двигателями, т.к. они способны обеспечить необходимую скорость полета.
В космическом пространстве использовать другие двигатели, кроме реактивных, невозможно, так как там нет опоры, отталкиваясь от которой можно было бы бы получать ускорение.

История развития реактивной техники

Создателем русской боевой ракеты был ученый-артиллерист К.И. Константинов. При весе в 80 кг далььность полета ракеты Константинова достигала 4 км.


Идея применения реактивного движения в летательном аппарате, проект реактивного воздухоплавательного прибора, в 1881 году была выдвинута Н.И. Кибальчичем.


В 1903 году знаменитый ученый-физик К.Э. Циолковский доказал возможность полета в межпланетном пространстве и разработал проект первого ракетоплана с жидкостно-реактивным двигателем.


К.Э. Циолковский спроектировал космический ракетный поезд, составленный из ряда ракет, работающих поочередно и отпадающих по мере израсходования горючего.


Принципы применения реактивных двигателей

Основой любого реактивного двигателя является камера сгорания, в которой при сгорании топлива образуются газы, имеющие очень высокую температуру и оказывающие давление на стенки камеры. Газы вырываются из узкого сопла ракеты с большой скоростью и создают реактивную тягу. В соответствии с законом сохранения импульса, ракета приобретает скорость в противоположном направлении.

Импульс системы (ракета-продукты сгорания) остается равным нулю. Так как масса ракеты уменьшается, то даже при постоянной скорости истечения газов ее скорость будет увеличиваться, постепенно достигая максимального значения.

Движение ракеты — это пример движения тела с переменной массой. Для расчета ее скорости используют закон сохранения импульса.


Реактивные двигатели делятся на ракетные двигатели и воздушно-реактивные двигатели.

Ракетные двигатели бывают на твердом или на жидком топливе.
В ракетных двигателях на твердом топливе топливо, содержащее и горючее, и окислитель, помешают внутрь камеры сгорания двигателя.
В жидкостно-реактивных двигателях , предназначенных для запуска космических кораблей, горючее и окислитель хранятся отдельно в специальных баках и с помощью насосов подаются в камеру сгорания. В качестве горючего в них можно использовать керосин, бензин, спирт, жидкий водород и др., а в качестве окислителя, необходимого для горения, — жидкий кислород, азотную кислоту, и др.


Современные трехступенчатые космические ракеты запускаются вертикально, а после прохода плотных слоев атмосферы переводятся на полет в заданном направлении. Каждая ступень ракеты имеет свой бак с горючим и бак с окислителем, а также свой реактивный двигатель. По мере сгорания топлива отработанные ступени ракеты отбрасываются.


Воздушно-реактивные двигатели в настоящее время применяют главным образом в самолетах. Основное их отличие от ракетных двигателей состоит в том, что окислителем для горения топлива служит кислород воздуха, поступающего внутрь двигателя из атмосферы.

К воздушно-реактивным двигателям относятся турбокомпрессорные двигатели как с осевым, так и с центробежным компрессором.
Воздух в таких двигателях всасывается и сжимается компрессором, приводимым в движение газовой турбиной. Газы, выходящие из камеры сгорания, создают реактивную силу тяги и вращают ротор турбины.


При очень болььших скоростях полета сжатие газов в камере сгорания можно осуществить за счет встречного набегающего воздушного потока. Необходимость в компрессоре отпадает.

У многих людей само понятие «реактивного движения» крепко ассоциируется с современными достижениями науки и техники, в особенности физики, а в голове появляются образы реактивных самолетов или даже космических кораблей, летающих на сверхзвуковых скоростях с помощью пресловутых реактивных двигателей. На самом же деле явление реактивного движения намного более древнее, чем даже сам человек, ведь оно появилось задолго до нас, людей. Да, реактивное движение активно представлено в природе: медузы, каракатицы вот уже миллионы лет плавают в морских пучинах по тому же самому принципу, по которому сегодня летают современные сверхзвуковые реактивные самолеты.

История реактивного движения

С древних времен различные ученые наблюдали явления реактивного движения в природе, так раньше всех о нем писал древнегреческий математик и механик Герон, правда, дальше теории он так и не зашел.

Если же говорить о практическом применении реактивного движения, то первыми здесь были изобретательные китайцы. Примерно в XIII веке они догадались позаимствовать принцип движения осьминогов и каракатиц при изобретении первых ракет, которые они начали использовать, как для фейерверков, так и для боевых действий (в качестве боевого и сигнального оружия). Чуть позднее это полезное изобретение китайцев переняли арабы, а от них уже и европейцы.

Разумеется, первые условно реактивные ракеты имели сравнительно примитивную конструкцию и на протяжении нескольких веков они практически никак не развивались, казалось, что история развития реактивного движения замерла. Прорыв в этом деле произошел только в XIX веке.

Кто открыл реактивное движение?

Пожалуй, лавры первооткрывателя реактивного движения в «новом времени» можно присудить Николаю Кибальчичу, не только талантливому российскому изобретателю, но и по совместительству революционеру-народовольцу. Свой проект реактивного двигателя и летательного аппарата для людей он создал сидя в царской тюрьме. Позднее Кибальчич был казнен за свою революционную деятельность, а его проект так и остался пылиться на полках в архивах царской охранки.

Позднее работы Кибальчича в этом направлении были открыты и дополнены трудами еще одного талантливого ученого К. Э. Циолковского. С 1903 по 1914 год им было опубликовано ряд работ, в которых убедительно доказывалась возможность использования реактивного движения при создании космических кораблей для исследования космического пространство. Им же был сформирован принцип использования многоступенчатых ракет. И по сей день многие идеи Циолковского применяются в ракетостроении.

Примеры реактивного движения в природе

Наверняка купаясь в море, Вы видели медуз, но вряд ли задумывались, что передвигаются эти удивительные (и к тому же медлительные) существа как раз таки с благодаря реактивному движению. А именно с помощью сокращения своего прозрачного купола они выдавливают воду, которая служит своего рода «реактивных двигателем» медуз.

Похожий механизм движения имеет и каракатица – через особую воронку впереди тела и через боковую щель она набирает воду в свою жаберную полость, а затем энергично выбрасывает ее через воронку, направленную взад либо в бок (в зависимости от направления движения нужного каракатице).

Но самый интересный реактивный двигатель созданный природой имеется у кальмаров, которых вполне справедливо можно назвать «живыми торпедами». Ведь даже тело этих животных по своей форме напоминает ракету, хотя по правде все как раз с точностью наоборот – это ракета своей конструкцией копирует тело кальмара.

Если кальмару необходимо совершить быстрый бросок, он использует свой природный реактивный двигатель. Тело его окружено мантией, особой мышечной тканью и половина объема всего кальмара приходится на мантийную полость, в которую тот всасывает воду. Потом он резко выбрасывает набранную струю воды через узкое сопло, при этом складывая все свои десть щупалец над головой таким образом, чтобы приобрести обтекаемую форму. Благодаря столь совершенной реактивной навигации кальмары могут достигать впечатляющей скорости – 60-70 км в час.

Среди обладателей реактивного двигателя в природе есть и растения, а именно так званный «бешеный огурец». Когда его плоды созревают, в ответ на самое легкое прикосновение он выстреливает клейковиной с семенами

Закон реактивного движения

Кальмары, «бешеные огурцы», медузы и прочие каракатицы издревле пользуются реактивным движением, не задумываясь о его физической сути, мы же попробуем разобрать, в чем суть реактивного движения, какое движение называют реактивным, дать ему определение.

Для начала можно прибегнуть к простому опыту – если обычный воздушный шарик надуть воздухом и, не завязывая отпустить в полет, он будет стремительно лететь, пока у него не израсходуется запас воздуха. Такое явление поясняет третий закон Ньютона, говорящий, что два тела взаимодействуют с силами равными по величине и противоположными по направлению.

То есть сила воздействия шарика на вырывающиеся из него потоки воздуха равна силе, которой воздух отталкивает от себя шарик. По схожему с шариком принципу работает и ракета, которая на огромной скорости выбрасывает часть своей массы, при этом получая сильное ускорение в противоположном направлении.

Закон сохранения импульса и реактивное движение

Физика поясняет процесс реактивного движения . Импульс это произведение массы тела на его скорость (mv). Когда ракета находится в состоянии покоя ее импульс и скорость равны нулю. Когда же из нее начинает выбрасываться реактивная струя, то остальная часть согласно закону сохранения импульса, должна приобрести такую скорость, при которой суммарный импульс будет по прежнему равен нулю.

Формула реактивного движения

В целом реактивное движение можно описать следующей формулой:
m s v s +m р v р =0
m s v s =-m р v р

где m s v s импульс создаваемой струей газов, m р v р импульс, полученный ракетой.

Знак минус показывает, что направление движения ракеты и сила реактивного движения струи противоположны.

Реактивное движение в технике – принцип работы реактивного двигателя

В современной технике реактивное движение играет очень важную роль, так реактивные двигатели приводят в движение самолеты, космические корабли. Само устройство реактивного двигателя может отличаться в зависимости от его размера и назначения. Но так или иначе в каждом из них есть

  • запас топлива,
  • камера, для сгорания топлива,
  • сопло, задача которого ускорять реактивную струю.

Так выглядит реактивный двигатель.

Реактивное движение, видео

И в завершение занимательное видео о физических экспериментах с реактивным движением.

Реактивное движение в природе и технике

РЕФЕРАТ ПО ФИЗИКЕ

Реактивное движение — движение, возникающее при отделении от тела с некоторой скоростью какой-либо его части.

Реактивная сила возникает без какого-либо взаимодействия с внешними телами.

Применение реактивного движения в природе

Многие из нас в своей жизни встречались во время купания в море с медузами. Во всяком случае, в Черном море их вполне хватает. Но мало кто задумывался, что и медузы для передвижения пользуются реактивным движением. Кроме того, именно так передвигаются и личинки стрекоз, и некоторые виды морского планктона. И зачастую КПД морских беспозвоночных животных при использовании реактивного движения гораздо выше, чем у техноизобретений.

Реактивное движение используется многими моллюсками – осьминогами, кальмарами, каракатицами. Например, морской моллюск-гребешок движется вперед за счет реактивной силы струи воды, выброшенной из раковины при резком сжатии ее створок.

Осьминог

Каракатица

Каракатица, как и большинство головоногих моллюсков, движется в воде следующим способом. Она забирает воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывает струю воды через воронку. Каракатица направляет трубку воронки в бок или назад и стремительно выдавливая из неё воду, может двигаться в разные стороны.

Сальпа — морское животное с прозрачным телом, при движении принимает воду через переднее отверстие, причем вода попадает в широкую полость, внутри которой по диагонали натянуты жабры. Как только животное сделает большой глоток воды, отверстие закрывается. Тогда продольные и поперечные мускулы сальпы сокращаются, все тело сжимается, и вода через заднее отверстие выталкивается наружу. Реакция вытекающей струи толкает сальпу вперед.

Наибольший интерес представляет реактивный двигатель кальмара. Кальмар является самым крупным беспозвоночным обитателем океанских глубин. Кальмары достигли высшего совершенства в реактивной навигации. У них даже тело своими внешними формами копирует ракету (или лучше сказать – ракета копирует кальмара, поскольку ему принадлежит в этом деле бесспорный приоритет). При медленном перемещении кальмар пользуется большим ромбовидным плавником, периодически изгибающимся. Для быстрого броска он использует реактивный двигатель. Мышечная ткань – мантия окружает тело моллюска со всех сторон, объем ее полости составляет почти половину объема тела кальмара. Животное засасывает воду внутрь мантийной полости, а затем резко выбрасывает струю воды через узкое сопло и с большой скоростью двигается толчками назад. При этом все десять щупалец кальмара собираются в узел над головой, и он приобретает обтекаемую форму. Сопло снабжено специальным клапаном, и мышцы могут его поворачивать, изменяя направление движения. Двигатель кальмара очень экономичен, он способен развивать скорость до 60 – 70 км/ч. (Некоторые исследователи считают, что даже до 150 км/ч!) Недаром кальмара называют “живой торпедой”. Изгибая сложенные пучком щупальца вправо, влево, вверх или вниз, кальмар поворачивает в ту или другую сторону. Поскольку такой руль по сравнению с самим животным имеет очень большие размеры, то достаточно его незначительного движения, чтобы кальмар, даже на полном ходу, легко мог увернуться от столкновения с препятствием. Резкий поворот руля – и пловец мчится уже в обратную сторону. Вот изогнул он конец воронки назад и скользит теперь головой вперед. Выгнул ее вправо – и реактивный толчок отбросил его влево. Но когда нужно плыть быстро, воронка всегда торчит прямо между щупальцами, и кальмар мчится хвостом вперед, как бежал бы рак – скороход, наделенный резвостью скакуна.

Если спешить не нужно, кальмары и каракатицы плавают, ундулируя плавниками, – миниатюрные волны пробегают по ним спереди назад, и животное грациозно скользит, изредка подталкивая себя также и струей воды, выброшенной из-под мантии. Тогда хорошо заметны отдельные толчки, которые получает моллюск в момент извержения водяных струй. Некоторые головоногие могут развивать скорость до пятидесяти пяти километров в час. Прямых измерений, кажется, никто не производил, но об этом можно судить по скорости и дальности полета летающих кальмаров. И такие, оказывается, есть таланты в родне у спрутов! Лучший пилот среди моллюсков – кальмар стенотевтис. Английские моряки называют его – флайинг-сквид («летающий кальмар»). Это небольшое животное размером с селедку. Он преследует рыб с такой стремительностью, что нередко выскакивает из воды, стрелой проносясь над ее поверхностью. К этой уловке он прибегает и спасая свою жизнь от хищников – тунцов и макрелей. Развив в воде максимальную реактивную тягу, кальмар-пилот стартует в воздух и пролетает над волнами более пятидесяти метров. Апогей полета живой ракеты лежит так высоко над водой, что летающие кальмары нередко попадают на палубы океанских судов. Четыре-пять метров – не рекордная высота, на которую поднимаются в небо кальмары. Иногда они взлетают еще выше.

Английский исследователь моллюсков доктор Рис описал в научной статье кальмара (длиной всего в 16 сантиметров), который, пролетев по воздуху изрядное расстояние, упал на мостик яхты, возвышавшийся над водой почти на семь метров.

Случается, что на корабль сверкающим каскадом обрушивается множество летающих кальмаров. Античный писатель Требиус Нигер поведал однажды печальную историю о корабле, который будто бы даже затонул под тяжестью летающих кальмаров, упавших на его палубу. Кальмары могут взлетать и без разгона.

Осьминоги тоже умеют летать. Французский натуралист Жан Верани видел, как обычный осьминог разогнался в аквариуме и вдруг задом вперед неожиданно выскочил из воды. Описав в воздухе дугу длиной метров в пять, он плюхнулся обратно в аквариум. Набирая скорость для прыжка, осьминог двигался не только за счет реактивной тяги, но и греб щупальцами.
Мешковатые осьминоги плавают, конечно, хуже кальмаров, но в критические минуты и они могут показать рекордный для лучших спринтеров класс. Сотрудники Калифорнийского аквариума пытались сфотографировать осьминога, атакующего краба. Спрут бросался на добычу с такой быстротой, что на пленке, даже при съемке на самых больших скоростях, всегда оказывались смазки. Значит, бросок длился сотые доли секунды! Обычно же осьминоги плавают сравнительно медленно. Джозеф Сайнл, изучавший миграции спрутов, подсчитал: осьминог размером в полметра плывет по морю со средней скоростью около пятнадцати километров в час. Каждая струя воды, выброшенная из воронки, толкает его вперед (вернее, назад, так как осьминог плывет задом наперед) на два – два с половиной метра.

Реактивное движение можно встретить и в мире растений. Например, созревшие плоды “бешеного огурца” при самом легком прикосновении отскакивают от плодоножки, а из образовавшегося отверстия с силой выбрасывается клейкая жидкость с семенами. Сам огурец при этом отлетает в противоположном направлении до 12 м.

Зная закон сохранения импульса можно изменять собственную скорость перемещения в открытом пространстве. Если вы находитесь в лодке и у вас есть несколько тяжёлых камней, то бросая камни в определённую сторону вы будете двигаться в противоположном направлении. То же самое будет и в космическом пространстве, но там для этого используют реактивные двигатели.

Каждый знает, что выстрел из ружья сопровождается отдачей. Если бы вес пули равнялся бы весу ружья, они бы разлетелись с одинаковой скоростью. Отдача происходит потому, что отбрасываемая масса газов создаёт реактивную силу, благодаря которой может быть обеспечено движение как в воздухе, так и в безвоздушном пространстве. И чем больше масса и скорость истекающих газов, тем большую силу отдачи ощущает наше плечо, чем сильнее реакция ружья, тем больше реактивная сила.

Применение реактивного движения в технике

В течение многих веков человечество мечтало о космических полётах. Писатели-фантасты предлагали самые разные средства для достижения этой цели. В XVII веке появился рассказ французского писателя Сирано де Бержерака о полёте на Луну. Герой этого рассказа добрался до Луны в железной повозке, над которой он всё время подбрасывал сильный магнит. Притягиваясь к нему, повозка всё выше поднималась над Землёй, пока не достигла Луны. А барон Мюнхгаузен рассказывал, что забрался на Луну по стеблю боба.

В конце первого тысячелетия нашей эры в Китае изобрели реактивное движение, которое приводило в действие ракеты — бамбуковые трубки, начиненные порохом, они также использовались как забава. Один из первых проектов автомобилей был также с реактивным двигателем и принадлежал этот проект Ньютону

Автором первого в мире проекта реактивного летательного аппарата, предназначенного для полета человека, был русский революционер – народоволец Н.И. Кибальчич. Его казнили 3 апреля 1881 г. за участие в покушении на императора Александра II. Свой проект он разработал в тюрьме после вынесения смертного приговора. Кибальчич писал: “Находясь в заключении, за несколько дней до своей смерти я пишу этот проект. Я верю в осуществимость моей идеи, и эта вера поддерживает меня в моем ужасном положении…Я спокойно встречу смерть, зная, что моя идея не погибнет вместе со мною”.

Идея использования ракет для космических полётов была предложена ещё в начале нашего столетия русским учёным Константином Эдуардовичем Циолковским. В 1903 году появилась в печати статья преподавателя калужской гимназии К.Э. Циолковского “Исследование мировых пространств реактивными приборами”. В этой работе содержалось важнейшее для космонавтики математическое уравнение, теперь известное как “формула Циолковского”, которое описывало движение тела переменной массы. В дальнейшем он разработал схему ракетного двигателя на жидком топливе, предложил многоступенчатую конструкцию ракеты, высказал идею о возможности создания целых космических городов на околоземной орбите. Он показал, что единственный аппарат, способный преодолеть силу тяжести — это ракета, т.е. аппарат с реактивным двигателем, использующим горючее и окислитель, находящиеся на самом аппарате.

Реактивный двигатель – это двигатель, преобразующий химическую энергию топлива в кинетическую энергию газовой струи, при этом двигатель приобретает скорость в обратном направлении.

Идея К.Э.Циолковского была осуществлена советскими учёными под руководством академика Сергея Павловича Королёва. Первый в истории искусственный спутник Земли с помощью ракеты был запущен в Советском Союзе 4 октября 1957 г.

Принцип реактивного движения находит широкое практическое применение в авиации и космонавтике. В космическом пространстве нет среды, с которой тело могло бы взаимодействовать и тем самым изменять направление и модуль своей скорости, поэтому для космических полетов могут быть использованы только реактивные летательные аппараты, т. е. ракеты.

Устройство ракеты

В основе движения ракеты лежит закон сохранения импульса. Если в некоторый момент времени от ракеты будет отброшено какое-либо тело, то она приобретет такой же импульс, но направленный в противоположную сторону

В любой ракете, независимо от ее конструкции, всегда имеется оболочка и топливо с окислителем. Оболочка ракеты включает в себя полезный груз (в данном случае это космический корабль), приборный отсек и двигатель (камера сгорания, насосы и пр.).

Основную массу ракеты составляет топливо с окислителем (окислитель нужен для поддержания горения топлива, поскольку в космосе нет кислорода).

Топливо и окислитель с помощью насосов подаются в камеру сгорания. Топливо, сгорая, превращается в газ высокой температуры и высокого давления. Благодаря большой разности давлений в камере сгорания и в космическом пространстве, газы из камеры сгорания мощнойструей устремляются наружу через раструб специальной формы, называемый соплом. Назначение сопла состоит в том, чтобы повысить скорость струи.

Перед стартом ракеты её импульс равен нулю. В результате взаимодействия газа в камере сгорания и всех остальных частей ракеты вырывающиёся через сопло газ получает некоторый импульс. Тогда ракета представляет собой замкнутую систему, и её общий импульс должен и после запуска равен нулю. Поэтому и оболочка ракеты совсем, что в ней находится, получает импульс, равный по модулю импульсу газа, но противоположный по направлению.

Наиболее массивную часть ракеты, предназначенную для старта и разгона всей ракеты, называют первой ступенью. Когда первая массивная ступень многоступенчатой ракеты исчерпает при разгоне все запасы топлива, она отделяется. Дальнейший разгон продолжает вторая, менее массивная ступень, и к ранее достигнутой при помощи первой ступени скорости она добавляет ещё некоторую скорость, а затем отделяется. Третья ступень продолжает наращивание скорости до необходимого значения и доставляет полезный груз на орбиту.

Первым человеком, который совершил полёт в космическом пространстве, был гражданин Советского Союза Юрий Алексеевич Гагарин. 12 апреля 1961 г. Он облетел земной шар на корабле-спутнике «Восток»

Советские ракеты первыми достигли Луны, облетели Луну и сфотографировали её невидимую с Земли сторону, первыми достигли планету Венера и доставили на её поверхность научные приборы. В 1986 г. Два советских космических корабля «Вега-1» и «Вега-2» с близкого расстояния исследовали комету Галлея, приближающуюся к Солнцу один раз в 76 лет.

Реактивное движение в природе и технике. Реактивное движение в технике, природе Реактивное движение краткое сообщение

Логика природы есть самая доступная и самая полезная логика для детей.

Константин Дмитриевич Ушинский (03.03.1823–03.01.1871) – русский педагог, основоположник научной педагогики в России.

Предлагаю читателям зелёных страничек заглянуть в увлекательный мир биофизики и познакомиться с основными принципами реактивного движения в живой природе . Сегодня в программе: медуза корнерот – самая крупная медуза Чёрного моря, морские гребешки , предприимчивая личинка стрекозы-коромысла , восхитительный кальмар с его непревзойдённым реактивным двигателем и замечательные иллюстрации в исполнении советского биолога и художника-анималиста Кондакова Николая Николаевича.

По принципу реактивного движения в живой природе передвигается целый ряд животных, например медузы, морские моллюски гребешки, личинки стрекозы-коромысла, кальмары, осьминоги, каракатицы… Познакомимся с некоторыми из них поближе;-)

Реактивный способ движения медуз

Медузы – одни из самых древних и многочисленных хищников на нашей планете! Тело медузы на 98% состоит из воды и в значительной части составлено из обводнённой соединительной ткани – мезоглеи , функционирующей как скелет. Основу мезоглеи составляет белок коллаген. Студенистое и прозрачное тело медузы по форме напоминает колокол или зонтик (в диаметре от нескольких миллиметров до 2,5 м ). Большинство медуз двигаются реактивным способом , выталкивая воду из полости зонтика.

Медузы Корнероты (Rhizostomae), отряд кишечнополостных животных класса сцифоидных. Медузы (до 65 см в диаметре) лишены краевых щупалец. Края рта вытянуты в ротовые лопасти с многочисленными складками, срастающимися между собой с образованием множества вторичных ротовых отверстий. Прикосновение к ротовым лопастям может вызвать болезненные ожоги , обусловленные действием стрекательных клеток. Около 80 видов; обитают преимущественно в тропических, реже в умеренных морях. В России – 2 вида : Rhizostoma pulmo обычен в Чёрном и Азовском морях, Rhopilema asamushi встречается в Японском море.

Реактивное бегство морских моллюсков гребешков

Морские моллюски гребешки , обычно спокойно лежащие на дне, при приближении к ним их главного врага – восхитительно медлительной, но чрезвычайно коварной хищницы – морской звезды – резко сжимают створки своей раковины, с силой выталкивая из неё воду. Используя, таким образом, принцип реактивного движения , они всплывают и, продолжая открывать и захлопывать раковину, могут отплывать на значительное расстояние. Если же гребешок по какой-то причине не успевает спастись своим реактивным бегством , морская звезда обхватывает его своими руками, вскрывает раковину и поедает…

Морской Гребешок (Pecten), род морских беспозвоночных животных класса двустворчатых моллюсков (Bivalvia). Раковина гребешка округлая с прямым замочным краем. Поверхность её покрыта расходящимися от вершины радиальными ребрами. Створки раковины смыкаются одним сильным мускулом. В Чёрном море обитают Pecten maximus, Flexopecten glaber; в Японском и Охотском морях – Mizuhopecten yessoensis (до 17 см в диаметре).

Реактивный насос личинки стрекозы-коромысла

Нрав у личинки стрекозы-коромысла , или эшны (Aeshna sp.) не менее хищный, чем у её крылатых сородичей. Два, а иногда и четыре года живёт она в подводном царстве, ползает по каменистому дну, выслеживая мелких водных обитателей, с удовольствием включая в свой рацион довольно-таки крупнокалиберных головастиков и мальков. В минуты опасности личинка стрекозы-коромысла срывается с места и рывками плывёт вперёд, движимая работой замечательного реактивного насоса . Набирая воду в заднюю кишку, а затем резко выбрасывая её, личинка прыгает вперёд, подгоняемая силой отдачи. Используя, таким образом, принцип реактивного движения , личинка стрекозы-коромысла уверенными толчками-рывками скрывается от преследующей её угрозы.

Реактивные импульсы нервной «автострады» кальмаров

Во всех, приведённых выше случаях (принципах реактивного движения медуз, гребешков, личинок стрекозы-коромысла), толчки и рывки отделены друг от друга значительными промежутками времени, следовательно большая скорость движения не достигается. Чтобы увеличилась скорость движения, иначе говоря, число реактивных импульсов в единицу времени , необходима повышенная проводимость нервов , которые возбуждают сокращение мышц, обслуживающих живой реактивный двигатель . Такая большая проводимость возможна при большом диаметре нерва.

Известно, что у кальмаров самые крупные в животном мире нервные волокна . В среднем они достигают в диаметре 1 мм – в 50 раз больше, чем у большинства млекопитающих – и проводят возбуждение они со скоростью 25 м/с . А у трёхметрового кальмара дозидикуса (он обитает у берегов Чили) толщина нервов фантастически велика – 18 мм . Нервы толстые, как верёвки! Сигналы мозга – возбудители сокращений – мчатся по нервной «автостраде» кальмара со скоростью легкового автомобиля – 90 км/ч .

Благодаря кальмарам, исследования жизнедеятельности нервов ещё в начале 20 века стремительно продвинулись вперёд. «И кто знает , – пишет британский натуралист Фрэнк Лейн, – может быть, есть сейчас люди, обязанные кальмару тем, что их нервная система находится в нормальном состоянии…»

Быстроходность и манёвренность кальмара объясняется также прекрасными гидродинамическими формами тела животного, за что кальмара и прозвали «живой торпедой» .

Кальмары (Teuthoidea), подотряд головоногих моллюсков отряда десятиногих. Размером обычно 0,25-0,5 м, но некоторые виды являются самыми крупными беспозвоночными животными (кальмары рода Architeuthis достигают 18 м , включая длину щупалец).
Тело у кальмаров удлинённое, заострённое сзади, торпедообразное, что определяет большую скорость их движения как в воде (до 70 км/ч ), так и в воздухе (кальмары могут выскакивать из воды на высоту до 7 м ).

Реактивный двигатель кальмара

Реактивное движение , используемое ныне в торпедах, самолётах, ракетах и космических снарядах, свойственно также головоногим моллюскам – осьминогам, каракатицам, кальмарам . Наибольший интерес для техников и биофизиков представляет реактивный двигатель кальмаров . Обратите внимание, как просто, с какой минимальной затратой материала решила природа эту сложную и до сих пор непревзойдённую задачу;-)

В сущности, кальмар располагает двумя принципиально различными двигателями (рис. 1а ). При медленном перемещении он пользуется большим ромбовидным плавником, периодически изгибающимся в виде бегущей волны вдоль корпуса тела. Для быстрого броска кальмар использует реактивный двигатель . Основой этого двигателя является мантия – мышечная ткань. Она окружает тело моллюска со всех сторон, составляя почти половину объёма его тела, и образует своеобразный резервуар – мантийную полость – «камеру сгорания» живой ракеты , в которую периодически засасывается вода. В мантийной полости находятся жабры и внутренние органы кальмара (рис. 1б ).

При реактивном способе плавания животное производит засасывание воды через широко открытую мантийную щель внутрь мантийной полости из пограничного слоя. Мантийная щель плотно «застёгивается» на специальные «запонки-кнопки» после того как «камера сгорания» живого двигателя наполнится забортной водой. Расположена мантийная щель вблизи середины тела кальмара, где оно имеет наибольшую толщину. Сила, вызывающая движение животного, создаётся за счёт выбрасывания струи воды через узкую воронку, которая расположена на брюшной поверхности кальмара. Эта воронка, или сифон, – «сопло» живого реактивного двигателя .

«Сопло» двигателя снабжено специальным клапаном и мышцы могут его поворачивать. Изменяя угол установки воронки-сопла (рис. 1в ), кальмар плывёт одинаково хорошо, как вперёд, так и назад (если он плывет назад, – воронка вытягивается вдоль тела, а клапан прижат к её стенке и не мешает вытекающей из мантийной полости водяной струе; когда кальмару нужно двигаться вперёд, свободный конец воронки несколько удлиняется и изгибается в вертикальной плоскости, её выходное отверстие сворачивается и клапан принимает изогнутое положение). Реактивные толчки и всасывание воды в мантийную полость с неуловимой быстротой следуют одно за другим, и кальмар ракетой проносится в синеве океана.

Кальмар и его реактивный двигатель – рисунок 1

1а) кальмар – живая торпеда; 1б) реактивный двигатель кальмара; 1в) положение сопла и его клапана при движении кальмара назад и вперёд.

На забор воды и её выталкивание животное затрачивает доли секунды. Засасывая воду в мантийную полость в кормовой части тела в периоды замедленных движений по инерции, кальмар тем самым осуществляет отсос пограничного слоя, предотвращая таким образом срыв потока при нестационарном режиме обтекания. Увеличивая порции выбрасываемой воды и учащая сокращения мантии, кальмар легко увеличивает скорость движения.

Реактивный двигатель кальмара очень экономичен , благодаря чему он может достигать скорости 70 км/ч ; некоторые исследователи считают, что даже 150 км/ч !

Инженеры уже создали двигатель, подобный реактивному двигателю кальмара : это водомёт , действующий при помощи обычного бензинового или дизельного двигателя. Почему же реактивный двигатель кальмара по-прежнему привлекает внимание инженеров и является объектом тщательных исследований биофизиков? Для работы под водой удобно иметь устройство, работающее без доступа атмосферного воздуха. Творческие поиски инженеров направлены на создание конструкции гидрореактивного двигателя , подобного воздушно-реактивному

По материалам замечательных книг:
«Биофизика на уроках физики» Цецилии Бунимовны Кац ,
и «Приматы моря» Игоря Ивановича Акимушкина

Кондаков Николай Николаевич (1908–1999) – советский биолог, художник-анималист , кандидат биологических наук. Основным вкладом в биологическую науку стали выполненные им рисунки различных представителей фауны. Эти иллюстрации вошли во многие издания, такие как Большая Советская Энциклопедия, Красная книга СССР , в атласы животных и в учебные пособия.

Акимушкин Игорь Иванович (01.05.1929–01.01.1993) – советский биолог, писатель – популяризатор биологии , автор научно-популярных книг о жизни животных. Лауреат премии Всесоюзного общества «Знание». Член Союза писателей СССР. Наиболее известной публикацией Игоря Акимушкина является шеститомная книга «Мир Животных» .

Материалы этой статьи полезно будет применить не только на уроках физики и биологии , но и во внеклассной работе.
Биофизический материал является чрезвычайно благодатным для мобилизации внимания учащихся, для превращения абстрактных формулировок в нечто конкретное и близкое, затрагивающее не только интеллектуальную, но и эмоциональную сферу.

Литература:
§ Кац Ц.Б. Биофизика на уроках физики

§ § Акимушкин И.И. Приматы моря
Москва: издательство «Мысль», 1974
§ Тарасов Л.В. Физика в природе
Москва: издательство «Просвещение», 1988

Применение реактивного движения в природе Многие из нас в своей жизни встречались во время купания в море с медузами. Но мало кто задумывался, что и медузы для передвижения пользуются реактивным движением. И зачастую КПД морских беспозвоночных животных при использовании реактивного движения гораздо выше, чем у техно изобретений.


Каракатица Каракатица, как и большинство головоногих моллюсков, движется в воде следующим способом. Она забирает воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывает струю воды через воронку. Каракатица направляет трубку воронки в бок или назад и стремительно выдавливая из неё воду, может двигаться в разные стороны.


Кальмар Кальмар является самым крупным беспозвоночным обитателем океанских глубин. Он передвигается по принципу реактивного движения, вбирая в себя воду, а затем с огромной силой проталкивая ее через особое отверстие — «воронку», и с большой скоростью (около 70 км\час) двигается толчками назад. При этом все десять щупалец кальмара собираются в узел над головой и он приобретает обтекаемую форму.

Летающий кальмар Это небольшое животное размером с селедку. Он преследует рыб с такой стремительностью, что нередко выскакивает из воды, стрелой проносясь над ее поверхностью. Развив в воде максимальную реактивную тягу, кальмар-пилот стартует в воздух и пролетает над волнами более пятидесяти метров. Апогей полета живой ракеты лежит так высоко над водой, что летающие кальмары нередко попадают на палубы океанских судов. Четыре-пять метров – не рекордная высота, на которую поднимаются в небо кальмары. Иногда они взлетают еще выше.

Осьминог Осьминоги тоже умеют летать. Французский натуралист Жан Верани видел, как обычный осьминог разогнался в аквариуме и вдруг задом вперед неожиданно выскочил из воды. Описав в воздухе дугу длиной метров в пять, он плюхнулся обратно в аквариум. Набирая скорость для прыжка, осьминог двигался не только за счет реактивной тяги, но и греб щупальцами.

Бешеный огурец В южных странах (и у нас на побережье Черного моря тоже) произрастает растение под названием «бешеный огурец». Стоит только слегка прикоснуться к созревшему плоду, похожему на огурец, как он отскакивает от плодоножки, а через образовавшееся отверстие из плода со скоростью до 10 м/с вылетает жидкость с семенами. Стреляет бешеный огурец (иначе его называют «дамский пистолет») более чем на 12 м.


Реактивное движение в природе и технике

РЕФЕРАТ ПО ФИЗИКЕ

Реактивное движение — движение, возникающее при отделении от тела с некоторой скоростью какой-либо его части.

Реактивная сила возникает без какого-либо взаимодействия с внешними телами.

Применение реактивного движения в природе

Многие из нас в своей жизни встречались во время купания в море с медузами. Во всяком случае, в Черном море их вполне хватает. Но мало кто задумывался, что и медузы для передвижения пользуются реактивным движением. Кроме того, именно так передвигаются и личинки стрекоз, и некоторые виды морского планктона. И зачастую КПД морских беспозвоночных животных при использовании реактивного движения гораздо выше, чем у техноизобретений.

Реактивное движение используется многими моллюсками – осьминогами, кальмарами, каракатицами. Например, морской моллюск-гребешок движется вперед за счет реактивной силы струи воды, выброшенной из раковины при резком сжатии ее створок.

Осьминог

Каракатица

Каракатица, как и большинство головоногих моллюсков, движется в воде следующим способом. Она забирает воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывает струю воды через воронку. Каракатица направляет трубку воронки в бок или назад и стремительно выдавливая из неё воду, может двигаться в разные стороны.

Сальпа — морское животное с прозрачным телом, при движении принимает воду через переднее отверстие, причем вода попадает в широкую полость, внутри которой по диагонали натянуты жабры. Как только животное сделает большой глоток воды, отверстие закрывается. Тогда продольные и поперечные мускулы сальпы сокращаются, все тело сжимается, и вода через заднее отверстие выталкивается наружу. Реакция вытекающей струи толкает сальпу вперед.

Наибольший интерес представляет реактивный двигатель кальмара. Кальмар является самым крупным беспозвоночным обитателем океанских глубин. Кальмары достигли высшего совершенства в реактивной навигации. У них даже тело своими внешними формами копирует ракету (или лучше сказать – ракета копирует кальмара, поскольку ему принадлежит в этом деле бесспорный приоритет). При медленном перемещении кальмар пользуется большим ромбовидным плавником, периодически изгибающимся. Для быстрого броска он использует реактивный двигатель. Мышечная ткань – мантия окружает тело моллюска со всех сторон, объем ее полости составляет почти половину объема тела кальмара. Животное засасывает воду внутрь мантийной полости, а затем резко выбрасывает струю воды через узкое сопло и с большой скоростью двигается толчками назад. При этом все десять щупалец кальмара собираются в узел над головой, и он приобретает обтекаемую форму. Сопло снабжено специальным клапаном, и мышцы могут его поворачивать, изменяя направление движения. Двигатель кальмара очень экономичен, он способен развивать скорость до 60 – 70 км/ч. (Некоторые исследователи считают, что даже до 150 км/ч!) Недаром кальмара называют “живой торпедой”. Изгибая сложенные пучком щупальца вправо, влево, вверх или вниз, кальмар поворачивает в ту или другую сторону. Поскольку такой руль по сравнению с самим животным имеет очень большие размеры, то достаточно его незначительного движения, чтобы кальмар, даже на полном ходу, легко мог увернуться от столкновения с препятствием. Резкий поворот руля – и пловец мчится уже в обратную сторону. Вот изогнул он конец воронки назад и скользит теперь головой вперед. Выгнул ее вправо – и реактивный толчок отбросил его влево. Но когда нужно плыть быстро, воронка всегда торчит прямо между щупальцами, и кальмар мчится хвостом вперед, как бежал бы рак – скороход, наделенный резвостью скакуна.

Если спешить не нужно, кальмары и каракатицы плавают, ундулируя плавниками, – миниатюрные волны пробегают по ним спереди назад, и животное грациозно скользит, изредка подталкивая себя также и струей воды, выброшенной из-под мантии. Тогда хорошо заметны отдельные толчки, которые получает моллюск в момент извержения водяных струй. Некоторые головоногие могут развивать скорость до пятидесяти пяти километров в час. Прямых измерений, кажется, никто не производил, но об этом можно судить по скорости и дальности полета летающих кальмаров. И такие, оказывается, есть таланты в родне у спрутов! Лучший пилот среди моллюсков – кальмар стенотевтис. Английские моряки называют его – флайинг-сквид («летающий кальмар»). Это небольшое животное размером с селедку. Он преследует рыб с такой стремительностью, что нередко выскакивает из воды, стрелой проносясь над ее поверхностью. К этой уловке он прибегает и спасая свою жизнь от хищников – тунцов и макрелей. Развив в воде максимальную реактивную тягу, кальмар-пилот стартует в воздух и пролетает над волнами более пятидесяти метров. Апогей полета живой ракеты лежит так высоко над водой, что летающие кальмары нередко попадают на палубы океанских судов. Четыре-пять метров – не рекордная высота, на которую поднимаются в небо кальмары. Иногда они взлетают еще выше.

Английский исследователь моллюсков доктор Рис описал в научной статье кальмара (длиной всего в 16 сантиметров), который, пролетев по воздуху изрядное расстояние, упал на мостик яхты, возвышавшийся над водой почти на семь метров.

Случается, что на корабль сверкающим каскадом обрушивается множество летающих кальмаров. Античный писатель Требиус Нигер поведал однажды печальную историю о корабле, который будто бы даже затонул под тяжестью летающих кальмаров, упавших на его палубу. Кальмары могут взлетать и без разгона.

Осьминоги тоже умеют летать. Французский натуралист Жан Верани видел, как обычный осьминог разогнался в аквариуме и вдруг задом вперед неожиданно выскочил из воды. Описав в воздухе дугу длиной метров в пять, он плюхнулся обратно в аквариум. Набирая скорость для прыжка, осьминог двигался не только за счет реактивной тяги, но и греб щупальцами.
Мешковатые осьминоги плавают, конечно, хуже кальмаров, но в критические минуты и они могут показать рекордный для лучших спринтеров класс. Сотрудники Калифорнийского аквариума пытались сфотографировать осьминога, атакующего краба. Спрут бросался на добычу с такой быстротой, что на пленке, даже при съемке на самых больших скоростях, всегда оказывались смазки. Значит, бросок длился сотые доли секунды! Обычно же осьминоги плавают сравнительно медленно. Джозеф Сайнл, изучавший миграции спрутов, подсчитал: осьминог размером в полметра плывет по морю со средней скоростью около пятнадцати километров в час. Каждая струя воды, выброшенная из воронки, толкает его вперед (вернее, назад, так как осьминог плывет задом наперед) на два – два с половиной метра.

Реактивное движение можно встретить и в мире растений. Например, созревшие плоды “бешеного огурца” при самом легком прикосновении отскакивают от плодоножки, а из образовавшегося отверстия с силой выбрасывается клейкая жидкость с семенами. Сам огурец при этом отлетает в противоположном направлении до 12 м.

Зная закон сохранения импульса можно изменять собственную скорость перемещения в открытом пространстве. Если вы находитесь в лодке и у вас есть несколько тяжёлых камней, то бросая камни в определённую сторону вы будете двигаться в противоположном направлении. То же самое будет и в космическом пространстве, но там для этого используют реактивные двигатели.

Каждый знает, что выстрел из ружья сопровождается отдачей. Если бы вес пули равнялся бы весу ружья, они бы разлетелись с одинаковой скоростью. Отдача происходит потому, что отбрасываемая масса газов создаёт реактивную силу, благодаря которой может быть обеспечено движение как в воздухе, так и в безвоздушном пространстве. И чем больше масса и скорость истекающих газов, тем большую силу отдачи ощущает наше плечо, чем сильнее реакция ружья, тем больше реактивная сила.

Применение реактивного движения в технике

В течение многих веков человечество мечтало о космических полётах. Писатели-фантасты предлагали самые разные средства для достижения этой цели. В XVII веке появился рассказ французского писателя Сирано де Бержерака о полёте на Луну. Герой этого рассказа добрался до Луны в железной повозке, над которой он всё время подбрасывал сильный магнит. Притягиваясь к нему, повозка всё выше поднималась над Землёй, пока не достигла Луны. А барон Мюнхгаузен рассказывал, что забрался на Луну по стеблю боба.

В конце первого тысячелетия нашей эры в Китае изобрели реактивное движение, которое приводило в действие ракеты — бамбуковые трубки, начиненные порохом, они также использовались как забава. Один из первых проектов автомобилей был также с реактивным двигателем и принадлежал этот проект Ньютону

Автором первого в мире проекта реактивного летательного аппарата, предназначенного для полета человека, был русский революционер – народоволец Н.И. Кибальчич. Его казнили 3 апреля 1881 г. за участие в покушении на императора Александра II. Свой проект он разработал в тюрьме после вынесения смертного приговора. Кибальчич писал: “Находясь в заключении, за несколько дней до своей смерти я пишу этот проект. Я верю в осуществимость моей идеи, и эта вера поддерживает меня в моем ужасном положении…Я спокойно встречу смерть, зная, что моя идея не погибнет вместе со мною”.

Идея использования ракет для космических полётов была предложена ещё в начале нашего столетия русским учёным Константином Эдуардовичем Циолковским. В 1903 году появилась в печати статья преподавателя калужской гимназии К.Э. Циолковского “Исследование мировых пространств реактивными приборами”. В этой работе содержалось важнейшее для космонавтики математическое уравнение, теперь известное как “формула Циолковского”, которое описывало движение тела переменной массы. В дальнейшем он разработал схему ракетного двигателя на жидком топливе, предложил многоступенчатую конструкцию ракеты, высказал идею о возможности создания целых космических городов на околоземной орбите. Он показал, что единственный аппарат, способный преодолеть силу тяжести — это ракета, т.е. аппарат с реактивным двигателем, использующим горючее и окислитель, находящиеся на самом аппарате.

Реактивный двигатель – это двигатель, преобразующий химическую энергию топлива в кинетическую энергию газовой струи, при этом двигатель приобретает скорость в обратном направлении.

Идея К.Э.Циолковского была осуществлена советскими учёными под руководством академика Сергея Павловича Королёва. Первый в истории искусственный спутник Земли с помощью ракеты был запущен в Советском Союзе 4 октября 1957 г.

Принцип реактивного движения находит широкое практическое применение в авиации и космонавтике. В космическом пространстве нет среды, с которой тело могло бы взаимодействовать и тем самым изменять направление и модуль своей скорости, поэтому для космических полетов могут быть использованы только реактивные летательные аппараты, т. е. ракеты.

Устройство ракеты

В основе движения ракеты лежит закон сохранения импульса. Если в некоторый момент времени от ракеты будет отброшено какое-либо тело, то она приобретет такой же импульс, но направленный в противоположную сторону

В любой ракете, независимо от ее конструкции, всегда имеется оболочка и топливо с окислителем. Оболочка ракеты включает в себя полезный груз (в данном случае это космический корабль), приборный отсек и двигатель (камера сгорания, насосы и пр.).

Основную массу ракеты составляет топливо с окислителем (окислитель нужен для поддержания горения топлива, поскольку в космосе нет кислорода).

Топливо и окислитель с помощью насосов подаются в камеру сгорания. Топливо, сгорая, превращается в газ высокой температуры и высокого давления. Благодаря большой разности давлений в камере сгорания и в космическом пространстве, газы из камеры сгорания мощнойструей устремляются наружу через раструб специальной формы, называемый соплом. Назначение сопла состоит в том, чтобы повысить скорость струи.

Перед стартом ракеты её импульс равен нулю. В результате взаимодействия газа в камере сгорания и всех остальных частей ракеты вырывающиёся через сопло газ получает некоторый импульс. Тогда ракета представляет собой замкнутую систему, и её общий импульс должен и после запуска равен нулю. Поэтому и оболочка ракеты совсем, что в ней находится, получает импульс, равный по модулю импульсу газа, но противоположный по направлению.

Наиболее массивную часть ракеты, предназначенную для старта и разгона всей ракеты, называют первой ступенью. Когда первая массивная ступень многоступенчатой ракеты исчерпает при разгоне все запасы топлива, она отделяется. Дальнейший разгон продолжает вторая, менее массивная ступень, и к ранее достигнутой при помощи первой ступени скорости она добавляет ещё некоторую скорость, а затем отделяется. Третья ступень продолжает наращивание скорости до необходимого значения и доставляет полезный груз на орбиту.

Первым человеком, который совершил полёт в космическом пространстве, был гражданин Советского Союза Юрий Алексеевич Гагарин. 12 апреля 1961 г. Он облетел земной шар на корабле-спутнике «Восток»

Советские ракеты первыми достигли Луны, облетели Луну и сфотографировали её невидимую с Земли сторону, первыми достигли планету Венера и доставили на её поверхность научные приборы. В 1986 г. Два советских космических корабля «Вега-1» и «Вега-2» с близкого расстояния исследовали комету Галлея, приближающуюся к Солнцу один раз в 76 лет.

Большое значение закон сохранения импульса имеет при рассмотрении реактивного движения.
Под реактивным движением понимают движение тела, возникающее при отделении некоторой его части с определенной скоростью относительно него, например при истечении продуктов сгорания из сопла реактивного летательного аппарата. При этом появляется так называемая реактивная сила , толкающая тело.
Особенность реактивной силы заключается в том, что она возникает в результате взаимодействия между собой частей самой системы без какого-либо взаимодействия с внешними телами.
В то время, как сила, сообщающая ускорение, например, пешеходу, кораблю или самолету, возникает только за счет взаимодействия этих тел с землей, водой или воздухом.

Так движение тела можно получить в результате вытекания струи жидкости или газа.

В природе реактивное движение присуще в основном живым организмам, обитающим в водной среде.


В технике реактивное движение используется на речном транспорте (водометные двигатели), в автомобилестроении (гоночные автомобили), в военном деле, в авиации и космонавтике.
Все современные скоростные самолеты оснащены реактивными двигателями, т.к. они способны обеспечить необходимую скорость полета.
В космическом пространстве использовать другие двигатели, кроме реактивных, невозможно, так как там нет опоры, отталкиваясь от которой можно было бы бы получать ускорение.

История развития реактивной техники

Создателем русской боевой ракеты был ученый-артиллерист К.И. Константинов. При весе в 80 кг далььность полета ракеты Константинова достигала 4 км.


Идея применения реактивного движения в летательном аппарате, проект реактивного воздухоплавательного прибора, в 1881 году была выдвинута Н.И. Кибальчичем.


В 1903 году знаменитый ученый-физик К.Э. Циолковский доказал возможность полета в межпланетном пространстве и разработал проект первого ракетоплана с жидкостно-реактивным двигателем.


К.Э. Циолковский спроектировал космический ракетный поезд, составленный из ряда ракет, работающих поочередно и отпадающих по мере израсходования горючего.


Принципы применения реактивных двигателей

Основой любого реактивного двигателя является камера сгорания, в которой при сгорании топлива образуются газы, имеющие очень высокую температуру и оказывающие давление на стенки камеры. Газы вырываются из узкого сопла ракеты с большой скоростью и создают реактивную тягу. В соответствии с законом сохранения импульса, ракета приобретает скорость в противоположном направлении.

Импульс системы (ракета-продукты сгорания) остается равным нулю. Так как масса ракеты уменьшается, то даже при постоянной скорости истечения газов ее скорость будет увеличиваться, постепенно достигая максимального значения.
Движение ракеты — это пример движения тела с переменной массой. Для расчета ее скорости используют закон сохранения импульса.


Реактивные двигатели делятся на ракетные двигатели и воздушно-реактивные двигатели.

Ракетные двигатели бывают на твердом или на жидком топливе.
В ракетных двигателях на твердом топливе топливо, содержащее и горючее, и окислитель, помешают внутрь камеры сгорания двигателя.
В жидкостно-реактивных двигателях , предназначенных для запуска космических кораблей, горючее и окислитель хранятся отдельно в специальных баках и с помощью насосов подаются в камеру сгорания. В качестве горючего в них можно использовать керосин, бензин, спирт, жидкий водород и др., а в качестве окислителя, необходимого для горения, — жидкий кислород, азотную кислоту, и др.


Современные трехступенчатые космические ракеты запускаются вертикально, а после прохода плотных слоев атмосферы переводятся на полет в заданном направлении. Каждая ступень ракеты имеет свой бак с горючим и бак с окислителем, а также свой реактивный двигатель. По мере сгорания топлива отработанные ступени ракеты отбрасываются.


Воздушно-реактивные двигатели в настоящее время применяют главным образом в самолетах. Основное их отличие от ракетных двигателей состоит в том, что окислителем для горения топлива служит кислород воздуха, поступающего внутрь двигателя из атмосферы.
К воздушно-реактивным двигателям относятся турбокомпрессорные двигатели как с осевым, так и с центробежным компрессором.
Воздух в таких двигателях всасывается и сжимается компрессором, приводимым в движение газовой турбиной. Газы, выходящие из камеры сгорания, создают реактивную силу тяги и вращают ротор турбины.


При очень болььших скоростях полета сжатие газов в камере сгорания можно осуществить за счет встречного набегающего воздушного потока. Необходимость в компрессоре отпадает.

Не была первым в мире реактивным двигателем. ученые наблюдали и исследовали еще до опытов Ньютона и вплоть до наших дней: Реактивное движение самолета.

Вертушка Герона

За тысячу восемьсот лет до опытов Ньютона первый паровой реактивный двигатель сделал замечательный изобретатель Герон Александрийский -древнегреческий механик, его изобретение получило название вертушка Герона . Герон Александрийский — древнегреческий механик, изобрел первую в мире паровую реактивную турбину. О Героне Александрийском нам известно немногое. Он был сыном брадобрея — парикмахера и учеником другого знаменитого изобретателя, Ктезибия . Жил Герон в Александрии примерно две тысячи сто пятьдесят лет назад. В приборе, изобретенном Героном, пар из котла, под которым горел огонь, проходил по двум трубкам в железный шар. Трубки одновременно служили осью, вокруг которой этот шар мог вращаться. Две другие трубки, изогнутые наподобие буквы «Г», были приделаны к шару так, что позволяли выходить пару наружу из шара. Когда под котлом разводили огонь, вода закипала и пар устремлялся в железный шар, а из него по изогнутым трубкам с силой вылетал наружу. Шар при этом вращался в сторону, противоположную той, в которую вылетали струи пара, это происходит согласно . Эту вертушку можно назвать первой в мире паровой реактивной турбиной.

Китайская ракета

Еще раньше, за много лет до Герона Александрийского, в Китае тоже изобрели реактивный двигатель несколько иного устройства, называемый ныне фейерверочной ракетой . Фейерверочные ракеты не следует смешивать с их тезками — сигнальными ракетами, которые применяют в армии и флоте, а также пускают в дни всенародных праздников под грохот артиллерийского салюта. Сигнальные ракеты — это просто пули, спрессованные из вещества, горящего цветным пламенем. Ими выстреливают из крупнокалиберных пистолетов — ракетниц.
Сигнальные ракеты — пули, спрессованные из вещества, горящего цветным пламенем. Китайская ракета представляет собой картонную или металлическую трубку, закрытую с одного конца и наполненную пороховым составом. Когда эту смесь поджигают, струя газов, вырываясь с большой скоростью из открытого конца трубки, заставляет ракету лететь в сторону, противоположную направлению газовой струи. Взлетать такая ракета может без помощи пистолета-ракетницы. Палочка, привязанная к корпусу ракеты, делает ее полет более устойчивым и прямолинейным.
Фейерверк с использованием китайских ракет.

Обитатели моря

В мире животных:
Здесь также встречается реактивное движение. Каракатицы, осьминоги и некоторые другие головоногие моллюски не имеют ни плавников, ни мощного хвоста, а плавают не хуже прочих обитателей моря . У этих мягкотелых существ в теле имеется довольно вместительный мешок или полость. В полость набирается вода, а затем животное с большой силой выталкивает эту воду наружу. Реакция выброшенной воды заставляет животное плыть в сторону, противоположную направлению струи.

Падающая кошка

Но самый интересный способ движения продемонстрировала обыкновенная кошка . Лет сто пятьдесят назад известный французский физик Марсель Депре заявил:
— А знаете ли, законы Ньютона не совсем верны. Тело может двигаться с помощью внутренних сил, ни на что не опираясь и ни от чего не отталкиваясь. — Где доказательства, где примеры? — протестовали слушатели. — Хотите доказательств? Извольте. Кошка, нечаянно сорвавшаяся с крыши, — вот доказательство! Как бы кошка ни падала, хоть головой вниз, на землю она обязательно встанет всеми четырьмя лапками. Но ведь падающая кошка ни на что не опирается и ни от чего не отталкивается, а переворачивается быстро и ловко. (Сопротивлением воздуха можно пренебречь — оно слишком ничтожно.)
Действительно, это знают все: кошки, падая; ухитряются всегда становиться на ноги.
Падающая кошка становится на четыре лапы. Кошки это делают инстинктивно, а человек может сделать то же самое сознательно. Пловцы, прыгающие с вышки в воду, умеют выполнять сложную фигуру — тройное сальто, то есть трижды перевернуться в воздухе, а потом вдруг выпрямиться, приостановить вращение своего тела и уже по прямой линии нырнуть в воду. Такие же движения, — без взаимодействия с каким-либо посторонним предметом, случается наблюдать в цирке во время выступления акробатов — воздушных гимнастов.
Выступление акробатов — воздушных гимнастов. Падающую кошку сфотографировали киносъемочным аппаратом и потом на экране рассматривали кадр за кадром, что делает кошка, когда летит в воздухе. Оказалось, что кошка быстро вертит лапкой. Вращение лапки вызывает ответное движение- реакцию всего туловища, и оно поворачивается в сторону, противоположную движению лапки. Все происходит в строгом соответствии с законами Ньютона, и именно благодаря им кошка становится на ноги. То же самое происходит во всех случаях, когда живое существо без всякой видимой причины изменяет свое движение в воздухе.

Водометный катер

У изобретателей появилась мысль, а почему бы не перенять у каракатиц их способ плавания. Они решили построить самоходное судно с водно-реактивным двигателем . Идея безусловно осуществимая. Правда, уверенности в удаче не было: изобретатели сомневались, получится ли такой водометный катер лучше обычного винтового. Надо было сделать опыт.
Водометный катер — самоходное судно с водно-реактивным двигателем. Выбрали старый буксирный пароход, починили его корпус, сняли гребные винты, а в машинном отделении поставили насос-водомет. Этот насос качал забортную воду и через трубу выталкивал ее за корму сильной струей. Пароход плыл, но двигался он все же медленнее винтового парохода. И это объясняется просто: обычный гребной винт вращается за кормой ничем не стесненный, вокруг него только вода; воду в водометном насосе приводил в движение почти точно такой же винт, но вращался он уже не на воде, а в тесной трубе. Возникало трение водяной струи о стенки. Трение ослабляло напор струи. Пароход с водометным движителем плыл медленнее винтового и топлива расходовал больше. Однако от постройки таких пароходов не отказались: у них нашлись важные преимущества. Судно, снабженное гребным винтом, должно сидеть в воде глубоко, иначе винт будет без толку пенить воду или вертеться в воздухе. Поэтому винтовые пароходы боятся отмелей и перекатов, они не могут плавать по мелководью. А водометные пароходы можно строить мелкосидящими и плоскодонными: им глубина не нужна — где пройдет лодка, там пройдет и водометный пароход. Первые водометные катера в Советском Союзе построены в 1953 году на Красноярской судостроительной верфи. Они предназначены для малых рек, где обычные пароходы не могут плавать.

Особенно прилежно инженеры, изобретатели и ученые занялись исследованием реактивного движения при появлении

огнестрельного оружия . Первые ружья — всевозможные пистоли, мушкеты и самопалы — при каждом выстреле сильно ударяли человека в плечо. После нескольких десятков выстрелов плечо начинало так болеть, что солдат уже не мог целиться. Первые пушки — пищали, единороги, кулеврины и бомбарды — при выстреле отпрыгивали назад, так что, случалось, калечили пушкарей-артиллеристов, если они не успевали увернуться и отскочить в сторону. Отдача орудия мешала меткой стрельбе, потому что пушка вздрагивала раньше, чем ядро или граната вылетали из ствола. Это сбивало наводку. Стрельба получалась неприцельной.
Стрельба с огнестрельного оружия. Инженеры-артиллеристы начали борьбу с отдачей более четырехсот пятидесяти лет назад. Сначала лафет снабдили сошником, который врезался в землю и служил прочным упором для пушки. Тогда думали, что если хорошенько подпереть пушку сзади, так чтобы ей некуда было откатываться, то отдача исчезнет. Но это была ошибка. Не был принят во внимание закон сохранения количества движения. Пушки ломали все подпорки, а лафеты так расшатывались, что орудие становилось непригодным для боевой работы. Тогда изобретатели поняли, что законы движения, как и всякие законы природы, нельзя переделать по-своему, их можно только «перехитрить» с помощью науки — механики. У лафета они оставили сравнительно небольшой сошник для упора, а ствол пушки положили на «салазки» так, чтобы откатывался только один ствол, а не все орудие целиком. Ствол соединили с поршнем компрессора, который ходит в своем цилиндре точно так же, как поршень паровой машины. Но в цилиндре паровой машины — пар, а в орудийном компрессоре — масло и пружина (или сжатый воздух). Когда ствол пушки откатывается назад, поршень сжимает пружину. Масло же в это время сквозь мелкие отверстия в поршне продавливается по другую сторону поршня. Возникает сильное трение, которое частично поглощает движение откатывающегося ствола, делает его более медленным и плавным. Потом сжатая пружина расправляется и возвращает поршень, а вместе с ним и ствол орудия на прежнее место. Масло нажимает на клапан, открывает его и свободно перетекает снова под поршень. Во время беглого огня ствол орудия почти непрерывно движется вперед и назад. В орудийном компрессоре отдача поглощается трением.

Дульный тормоз

Когда мощность и дальнобойность пушек возросла, компрессора оказалось недостаточно, чтобы обезвредить отдачу. В помощь ему был изобретен дульный тормоз . Дульный тормоз — это всего лишь короткая стальная труба, укрепленная на срезе ствола и служащая как бы его продолжением. Диаметр ее больше диаметра канала ствола, и поэтому она нисколько не мешает снаряду вылетать из дула. В стенках трубки по окружности прорезано несколько продолговатых отверстий.
Дульный тормоз — уменьшает отдачу огнестрельного оружия. Пороховые газы, вылетающие из ствола орудия вслед за снарядом, сразу же расходятся в стороны, и часть их попадает в отверстия дульного тормоза. Эти газы с большой силой ударяются о стенки отверстий, отталкиваются от них и вылетают наружу, но уже не вперед, а немного вкось и назад. При этом они давят на стенки вперед и толкают их, а вместе с ними и весь ствол орудия. Они помогают лафетной пружине потому, что стремятся вызвать откат ствола вперед. А в то время, пока они находились в стволе, они толкали орудие назад. Дульный тормоз значительно уменьшает и ослабляет отдачу. Другие изобретатели пошли иным путем. Вместо того чтобы бороться с реактивным движением ствола и стараться его погасить, они решили применить откат орудия с пользой для дела. Эти изобретатели создали много образцов автоматического оружия: винтовок, пистолетов, пулеметов и пушек, в которых отдача служит для того, чтобы выбрасывать использованную гильзу и перезаряжать оружие.

Реактивная артиллерия

Можно совсем не бороться с отдачей, а использовать ее: ведь действие и реакция (отдача) равносильны, равноправны, равновелики, так пусть же реактивное действие пороховых газов , вместо того чтобы отталкивать назад ствол орудия, посылает снаряд вперед в цель. Так была создана реактивная артиллерия . В ней струя газов бьет не вперед, а назад, создавая в снаряде направленную вперед реакцию. Для реактивного орудия оказывается ненужным дорогой и тяжелый ствол. Для направления полета снаряда прекрасно служит более дешевая, простая железная труба. Можно обойтись вовсе без трубы, а заставить снаряд скользить по двум металлическим рейкам. По своему устройству реактивный снаряд подобен фейерверочной ракете, он только размерами побольше. В его головной части вместо состава для цветного бенгальского огня помещается разрывной заряд большой разрушительной силы. Середина снаряда наполняется порохом, который при горении создает мощную струю горячих газов, толкающих снаряд вперед. При этом сгорание пороха может длиться значительную часть времени полета, а не только тот короткий промежуток времени, пока обычный снаряд продвигается в стволе обычной пушки. Выстрел не сопровождается таким громким звуком. Реактивная артиллерия не моложе обыкновенной артиллерии, а может быть, даже старше ее: о боевом применении ракет сообщают старинные китайские и арабские книги, написанные более тысячи лет назад. В описаниях сражений более поздних времен нет-нет, да и промелькнет упоминание о боевых ракетах. Когда английские войска покоряли Индию, индийские воины-ракетчики своими огнехвостыми стрелами наводили ужас на захватчиков-англичан, порабощавших их родину. Для англичан в то время реактивное оружие было в диковинку. Ракетными гранатами, изобретенными генералом К. И. Константиновым , мужественные защитники Севастополя в 1854-1855 годах отбивали атаки англо-французских войск.

Ракета

Огромное преимущество перед обыкновенной артиллерией — отпадала необходимость возить за собой тяжелые пушки — привлекло к реактивной артиллерии внимание военачальников. Но столь же крупный недостаток мешал ее усовершенствованию. Дело в том, что метательный, или, как раньше говорили, форсовый, заряд умели делать только из черного пороха. А черный порох опасен в обращении. Случалось, что при изготовлении ракет метательный заряд взрывался, и гибли рабочие. Иногда ракета взрывалась при запуске, и гибли артиллеристы. Изготовлять и употреблять такое оружие было опасно. Поэтому оно и не получило широкого распространения. Начатые успешно работы, однако, не привели к постройке межпланетного корабля. Немецкие фашисты подготовили и развязали кровопролитную мировую войну.

Реактивный снаряд

Недостаток при изготовлении ракет устранили советские конструкторы и изобретатели. В годы Великой Отечественной войны они дали нашей армии превосходное реактивное оружие. Были построены гвардейские минометы — «катюши» и изобретены РС («эрэс») — реактивные снаряды .
Реактивный снаряд. По своему качеству советская реактивная артиллерия превзошла все иностранные образцы и причиняла врагам громадный урон. Защищая Родину, советский народ был вынужден поставить все достижения ракетной техники на службу обороны. В фашистских государствах многие ученые и инженеры еще до войны усиленно разрабатывали проекты бесчеловечных орудий разрушения и массовых убийств. Это они считали целью науки.

Самоуправляющиеся самолеты

Во время войны гитлеровские инженеры построили несколько сот самоуправляющихся самолетов : снарядов «ФАУ-1» и реактивных снарядов «ФАУ-2». То были сигарообразные снаряды, имевшие в длину 14 метров и в диаметре 165 сантиметров. Весила смертоносная сигара 12 тонн; из них 9 тонн — топливо, 2 тонны — корпус и 1 тонна — взрывчатое вещество. «ФАУ-2» летели со скоростью до 5500 километров в час и могли подниматься в высоту на 170-180 километров. Точностью попадания эти средства разрушения не отличались и были пригодны только для обстрела таких крупных мишеней, как большие и густонаселенные города. Немецкие фашисты выпускали «ФАУ-2» за 200-300 километров от Лондона в расчете, что город велик, — куда-нибудь да попадет! Вряд ли Ньютон мог предполагать, что его остроумный опыт и открытые им законы движения лягут в основу оружия, созданного звериной злобой к людям, и целые кварталы Лондона обратятся в развалины и станут могилами людей, захваченных налетом слепых «ФАУ».

Космический корабль

Уже много веков люди лелеяли мечту о полетах в межпланетном пространстве, о посещении Луны, загадочного Марса и облачной Венеры. На эту тему было написано множество научно-фантастических романов, повестей и рассказов. Писатели отправляли своих героев в заоблачные дали на дрессированных лебедях, на воздушных шарах, в пушечных снарядах или еще каким-нибудь невероятным образом. Однако все эти способы полета основывались на выдумках, не имевших опоры в науке. Люди только верили, что они когда-нибудь сумеют покинуть нашу планету, но не знали, как это им удастся осуществить. Замечательный ученый Константин Эдуардович Циолковский в 1903 году впервые дал научную основу идее космических путешествий . Он доказал, что люди могут покинуть земной шар и транспортным средством для этого послужит ракета, потому что ракета — единственный двигатель, который не нуждается для своего движения в какой-либо внешней опоре. Поэтому ракета способна летать в безвоздушном пространстве. Ученый Константин Эдуардович Циолковский — доказал, что люди могут покинуть земной шар на ракете. По своему устройству космический корабль должен быть подобен реактивному снаряду, только в его головной части поместится кабина для пассажиров и приборов, а все остальное пространство будет занято запасом горючей смеси и двигателем. Чтобы придать кораблю нужную скорость, требуется подходящее топливо. Порох и другие взрывчатые вещества ни в коем случае не пригодны: они и опасны и слишком быстро сгорают, не обеспечивая длительного движения. К. Э. Циолковский рекомендовал применять жидкое топливо: спирт, бензин или сжиженный водород, горящие в струе чистого кислорода или какого-либо другого окислителя. Правильность этого совета признали все, потому что лучшего топлива тогда не знали. Первая ракета с жидким горючим, весившая шестнадцать килограммов, была испытана в Германии 10 апреля 1929 года. Опытная ракета взлетела в воздух и скрылась из вида раньше, чем изобретатель и все присутствующие сумели проследить, куда она полетела. Найти ракету после опыта не удалось. На следующий раз изобретатель решил «перехитрить» ракету и привязал к ней веревку длиной четыре километра. Ракета взвилась, волоча за собой веревочный хвост. Она вытянула два километра веревки, оборвала ее и последовала за своей предшественницей в неизвестном направлении. И эту беглянку также не удалось найти. Первый успешный полет ракеты с жидким топливом состоялся в СССР 17 августа 1933 года. Ракета поднялась, пролетела положенное ей расстояние и благополучно приземлилась. Все эти открытия и изобретения основаны на законах Ньютона.

Презентация «Реактивное движение в природе и технике» (10 класс)

Что общего у кальмаров, осьминогов, медуз, личинок стрекозы

и современного самолета или космического корабля?

Под реактивным движением понимают движение тела, возникающее при отделении некоторой его части с определенной скоростью V относительно тела. Например, при истечении продуктов горения из сопла реактивного летательного аппарата. При этом появляется так называемая реактивная сила F, толкающая тело. Реактивная сила возникает без какого-либо взаимодействия с внешними телами. Такое движение описывается законом сохранения импульса.

Многие из нас в своей жизни встречались во время купания в море с медузами. Но мало кто задумывался, что и медузы для передвижения пользуются реактивным движением. И зачастую КПД морских беспозвоночных животных при использовании реактивного движения гораздо выше, чем у технических изобретений созданных человеком.

Медузы всегда привлекают внимание своей красотой и легкостью. Медузы водятся во всех океанах и в некоторых пресноводных озерах и реках. Посмотрите какое разнообразие цветов, а общим для всех является способ передвижения.

Средиземноморская медуза «Жареное яйцо»

Это удивительное существо действительно напоминает жареное яйцо. Медуза обитает в Средиземном, Адриатическом и Эгейском море. Ее важной особенностью считается то, что она может передвигаться самостоятельно, используя реактивный принцип движения.

Медуза «Пушечное ядро» обитает вдоль восточного побережья США до Бразилии. Свое название она получила из-за необычной формы идеально гладкой и круглой, как пушечное ядро. В странах Азии эти медузы широко используются в народной медицине. Считается, что они могут излечить болезнь легких, артрит, понизить артериальное.

(Просмотр видеоролика передвижение медуз )

Реактивное движение используется многими моллюсками – осьминогами, кальмарами, каракатицами.

Осьминог с древне–греческого, это название переводится как «восемь ног». Осьминоги являются головоногими моллюсками.

(Просмотр видеоролика передвижение осьминога)

Кальмары достигли высшего совершенства в реактивной навигации. У них даже тело своими внешними формами копирует ракету (или лучше сказать – ракета копирует кальмара, поскольку ему принадлежит в этом деле бесспорный приоритет).

(Просмотр видеоролика передвижение кальмара)

Кальмар является самым крупным беспозвоночным обитателем океанских глубин. Он передвигается по принципу реактивного движения, вбирая в себя воду, а затем с огромной силой проталкивая ее через особое отверстие — «воронку», и с большой скоростью (около 70 км\час) двигается толчками назад. При этом все десять щупалец кальмара собираются в узел над головой и он приобретает обтекаемую форму. Маневренность кальмара объясняется прекрасными гидродинамическими формами тела животного, за что его прозвали «живой торпедой»

Летающие кальмары -это небольшие животные размером с селедку. Кальмар преследует рыб с такой стремительностью, что нередко выскакивает из воды, стрелой проносясь над ее поверхностью. Развив в воде максимальную реактивную тягу, кальмар-пилот стартует в воздух и пролетает над волнами более пятидесяти метров. Апогей полета живой ракеты лежит так высоко над водой, что летающие кальмары нередко попадают на палубы океанских судов. Четыре-пять метров – не рекордная высота, на которую поднимаются в небо кальмары. Иногда они взлетают еще выше.

Каракатицы, как и большинство головоногих моллюсков, движется в воде следующим способом. Она забирает воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывает струю воды через воронку.

Морской моллюск – гребешок, резко сжимая створки раковины, рывками может двигаться вперед за счет реактивной силы струи воды выброшенной из раковины.

(Просмотр видеоролика передвижение морского молюска)

Сальпа — морское животное с прозрачным телом, при движении принимает воду через переднее отверстие, причем вода попадает в широкую полость, внутри которой по диагонали натянуты жабры. Как только животное сделает большой глоток воды, отверстие закрывается. Тогда продольные и поперечные мускулы сальпы сокращаются, все тело сжимается, и вода через заднее отверстие выталкивается наружу. Реакция вытекающей струи толкает сальпу вперед. Сальпы относятся к оболочникам — а оболочники, это такие древнейшие хордовые. Плавает, качает сквозь себя воду, думать особо нечем, мир воспринимать — тоже. Всего известно около 30 видов сальп]. Они обитают во всех океанах, кроме Северного Ледовитого. Обладают способностью светиться (за счёт симбиотических бактерий). Питаются фитопланктоном. Служат пищей некоторым рыбам и морским черепахам.

Насекомые. Подобным образом перемещаются и личинки стрекоз. Реактивное движение личинка использует главным образом в минуту опасности для того, чтобы быстро переместиться на другое место. Такой способ передвижения не предусматривает точного маневрирования и не пригоден для погони за добычей. Личинка перемещается по принципу реактивного движения на 6-8 см.

Примеры реактивного движения можно обнаружить и в мире растений.

«Бешеный огурец» — так в народе называют колючеплодник, или эхиноцистис шиповатый (Echinocystis echinata). Это однолетнее декоративное растение-лиана семейства тыквенных. Распространён бешеный огурец главным образом в Причерноморье, на побережье, встречается почти во всей юго-восточной Европе. Он предпочитает сорные и песчаные места, в том числе в приморской полосе, любит селиться у жилья – возле стен, изгородей. Болгарское и русское названия «огурца» вряд ли покажутся странными, если помнить, что серо-зелёный продолговатый плод, усаженный колючими щетинками, способен – особенно при случайном касании животными, ногой или рукой человека – стремительно, резко отрываться, отскакивать от плодоножки, с силой выбрасывая наружу под значительным давлением многочисленные семена, которые могут отлетать на довольно значительное расстояние более чем 12 метров. Плод этого растения, очень похож на своего родственника – обыкновенного огурца

Любопытный механизм разбрасывания семян есть у обыкновенной кислицы (заячий щавель). Конструкция механизма сходна с таковой у бешеного огурца.

У эшшольции от растения активно отделяется – отскакивает — целиком весь плод с созревшими семенами.

Желтая акация. Думаю, многие из Вас слышали в хорошую солнечную погоду в конце лета либо в начале осени в парках где растёт жёлтая акация слышится лёгкий треск, причём повторяющийся через короткие промежутки времени. Вот так трескаются бобы на кустах акации. Также как и у недотроги створки их раскрываются, скручиваются и разбрасывают семена далеко в стороны, но только в момент подсыхания.

Недотрога. К примеру, некоторые растения сами разбрасывают свои семена на дальние расстояния. В тенистых местах у заборов либо канав можно встретить весьма необычное растение с таким серьёзным названием – недотрога. Если дотронуться до кончика его плода, створки плода разрываются, затем скручиваются и с силой разбрасывают семена. Плод — линейно продолговатая коробочка, которая при прикосновении к ней во время созревания растрескивается и с силой выбрасывает семена, отсюда и название растения недотрога.

Еще одно стреляющее растение семейства тыквенных — циклантера. Она распространена в Центральной и Южной Америке. Ее плод, который достигает 2-3 см в длину, состоит из двух створок. Между ними находится своеобразный рычаг, на котором растут семена. При этом давление в плоде измеряется 14-16 атмосферами, что в 10 раз превышает давление в автомобильных покрышках. При малейшем сотрясении плода створки распахиваются, а рычаг действует по принципу катапульты, отбрасывая семена на расстояние до трех метров.

Тропическое растение хура взрывающаяся относится к семейству молочайных. Ее плоды состоят из 14 долек, которые при созревании громко трескаются и «стреляют» семенами почти на 15 метров. Интересный случай произошел в одном европейском ботаническом саду. Посетители вдруг услышали громкий хлопок, после чего разбилась витрина. Выстрелы повторились, и началась паника. Прибывшие полицейские сразу же обнаружили «террориста» — хуру взрывающуюся.

Небольшой полукустарник дорикниум — это многолетнее растение с деревенеющими ветками. Его соцветия в виде пышных зонтиков цветут с мая до конца июля. Однажды ученый, собиравший это растение с плодами, оставил веточки на солнце, после чего прозвучала череда выстрелов. Как оказалось, при нагревании плоды с треском выбрасывали семена в надежде завоевать новую территорию.

Момордика. (индийский гранат) – еще одно растение которое распространяет свои семена при помощи реактивного движения.

Человечество стало использовать реактивное движение в конце первого тысячелетия нашей эры. В Китае использовали реактивное движение, которое приводило в действие ракеты — бамбуковые трубки, начиненные порохом, они использовались как забава.

Один из первых проектов автомобилей был также с реактивным двигателем и принадлежал этот проект Исааку Ньютону.

Одно из главнейших изобретений человечества в XX веке — это изобретение реактивного двигателя, который позволил человеку подняться в космос.

Флайборд – вид экстремального отдыха, позволяет человеку прочувствовать на себе все прелести, получаемые спортсменами-виндсерферами, сноубордистами, а также парашютистами. По сути, аппарат для флайборда представляет собой устройство для синтеза всех вышеупомянутых экстремальных видов спорта, при этом отличается отсутствием овладения необходимыми навыками.

История создания флайборда

Фрэнк Запат — французский спортсмен, чемпион мира по гидроциклам, разработавший данный фантастический экстремальный аппарат – флайборд в 2012 году.

(Просмотр видеоролика флайборд)

Реактивное движение в природе и технике

1. Реактивное движение в природе и технике

•Реактивное движение – это
движение, возникающее при
отделении от тела с некоторой
скоростью какой-либо его части.
•Реактивная сила возникает без
какого-либо взаимодействия с
внешними телами.
Реактивная сила
возникает без какого-либо взаимодействия
с внешними телами.
Например, если запастись достаточным
количеством мячей, то лодку можно разогнать
и без помощи весел, действием только одних
внутренних сил. Толкая мяч, человек (а
значит и лодка) сам получает толчок согласно
закону сохранения импульса.

4. Реактивное движение

Под
реактивным
движением
понимают
движение
тела,
возникающее
при
отделении
некоторой
его
части
с
определенной
скоростью
V
относительно тела.
Медузы

6. Медузы всегда привлекают внимание своей красотой и легкостью. Медузы водятся во всех океанах и в некоторых пресноводных озерах

и
реках. Посмотрите какое
разнообразие цветов, а общим для
всех является способ
передвижения.

9. Медузы

Дарт Вейдер или наркомедуза

10. Медузы

11. Медузы

12. Реактивное движение используется многими моллюсками – осьминогами, кальмарами, каракатицами.

Осьминоги
Кальмары
• Кальмары достигли высшего
совершенства в реактивной
навигации. У них даже тело
своими внешними формами
копирует ракету (или лучше
сказать – ракета копирует
кальмара, поскольку ему
принадлежит в этом деле
бесспорный приоритет)

17. Летающие кальмары

Это небольшое животное размером с
селедку. Он преследует рыб с такой
стремительностью, что нередко выскакивает
из воды, стрелой проносясь над ее
поверхностью. Развив в воде максимальную
реактивную тягу, кальмар-пилот стартует в
воздух и пролетает над волнами более
пятидесяти метров. Апогей полета живой
ракеты лежит так высоко над водой, что
летающие кальмары нередко попадают на
палубы океанских судов. Четыре-пять
метров – не рекордная высота, на которую
поднимаются в небо кальмары. Иногда они
взлетают еще выше.
Летающие кальмары

19. Каракатица

Каракатица, как и
большинство головоногих
моллюсков, движется в
воде следующим
способом. Она забирает
воду в жаберную полость
через боковую щель и
особую воронку впереди
тела, а затем энергично
выбрасывает струю воды
через воронку.

20. Гребешок – морской моллюск

Морской моллюск
– гребешок, резко
сжимая створки
раковины, рывками
может двигаться
вперед за счет
реактивной силы
струи воды
выброшенной из
раковины.
Сальпа

23. Насекомые

Подобным образом перемещаются и личинки
стрекоз. Реактивное движение личинка
использует главным образом в минуту
опасности для того, чтобы быстро
переместиться на другое место. Такой способ
передвижения не предусматривает точного
маневрирования и не пригоден для погони за
добычей. Личинка перемещается по принципу
реактивного движения на 6-8 см.

24. Личинки стрекозы

В конце первого тысячелетия нашей эры в
Китае использовали реактивное движение,
которое приводило в действие ракеты бамбуковые трубки, начиненные порохом, они
использовались как забава.
Один из первых проектов автомобилей был
также с реактивным двигателем и
принадлежал этот проект Ньютону
Одно из главнейших
изобретений
человечества в XX веке это изобретение
реактивного двигателя,
который позволил
человеку подняться в
космос.
Закон сохранения импульса
y
M р р mгазаuгаза 0
ракеты
M р р mгазаu газа 0
M р р mгазаuгаза
mгаз
p
U газа
Mp
газа

28. В любой ракете всегда имеется: оболочка и топливо с окислителем. Основную массу ракеты составляет топливо с окислителем.

Топливо и
окислитель с помощью
насосов подается в камеру
сгорания. Топливо, сгорая,
превращается в газ высокой
температуры и высокого
давления. Благодаря большой
разности давления в камере
сгорания и в космическом
пространстве, газы с камеры
сгорания мощной струей
устремляются наружу через
сопло.

29. Жюль Верн

Писатель
фантаст, он
отправил свой
корабль на луну
из пушки («Из
пушки на
Луну»1867г.)

30. Николай Иванович Кибальчич (1853-1881)

31. Константин Эдуардович Циолковский (1857-1935). Разработал теорию движения ракет, вывел формулу для расчета и скорости, был

первым, кто
предложил
использовать
многоступенчатые
ракеты

32. Великие изобретатели ракетной техники — ученые, реализовавшие идеи Циолковского

С. П.Королёв
М.К. Янгель
4 октября 1957 года в нашей стране
был запущен первый в мире
искусственный спутник Земли.
3 ноября 1957 года в космос был
запущен спутник с собакой
Лайкой на борту.
2 января 1959 года была
запущена первая
автоматическая межпланетная
станция «Луна-1», которая стала
первым искусственным
спутником Солнца.
12 апреля 1961 года Юрий Алексеевич Гагарин
совершил первый в мире пилотируемый
космический полет на корабле-спутнике
«Восток-1».

34. Флайборд

35. Большое thank you за внимание!!!

Физика. Реактивное движение в природе и в технике. Реактивное движение — Гипермаркет знаний

Сегодня реактивное движение у большинства людей в первую очередь, конечно же, ассоциируется с новейшими научными и техническими разработками. Из учебников по физике нам известно, что под «реактивным» подразумевают движение, которое возникает в результате отделения от предмета (тела) любой его части. Человек хотел подняться в небо к звёздам, стремился летать, но осуществить свою мечту смог только с появлением реактивных самолетов и ступенчатых космических кораблей, способных перемещаться на огромные расстояния, разгоняясь до сверхзвуковых скоростей, благодаря установленным на них современным реактивным двигателям. Конструктора и инженеры разрабатывали возможность использования реактивного движения в двигателях. Фантасты тоже не оставались в стороне, предлагая самые невероятные идеи и способы достижения этой цели. Удивительно, но этот принцип перемещения широко распространен в живой природе. Достаточно осмотреться вокруг, можно заметить обитателей морей и суши, среди которых есть и растения, в основе движения которых лежит реактивный принцип.

История

Еще в античные времена ученые с интересом изучали и анализировали явления, связанные с реактивным движением в природе. Одним из первых, кто теоретически обосновал и описал его суть, был Герон, механик и теоретик Древней Греции, который изобрел первый паровой двигатель, названый в честь него. Китайцы смогли найти реактивному методу практическое применение. Они первыми, взяв за основу способ передвижения каракатиц и осьминогов, еще в XIII веке изобрели ракеты. Они применялись в фейерверках, производя большое впечатление, а также, как сигнальные ракеты, возможно были и боевые ракеты, которые использовались как реактивная артилерия. Со временем эта технология пришла и в Европу.

Первооткрывателем нового времени стал Н. Кибальчич, придумав схему прототипа летательного аппарата с реактивным двигателем. Он был выдающимся изобретателем и убежденным революционером, за что сидел в тюрьме. Именно находясь в заключении, он вошел в историю, создав свой проект. После его казни за активную революционную деятельность и выступления против монархии, его изобретение было забыто на архивных полках. Спустя некоторое время К.Циолковский смог усовершенствовать идеи Кибальчича, доказывая возможность исследовать космическое пространство посредством реактивного перемещения космических кораблей.

Позже, в ходе Великой Отечественной войны, появились знаменитые Катюши, системы полевой реактивной артиллерии. Так ласковым именем народ неофициально именовал мощные установки, которые применяли силы СССР. Достоверно неизвестно, в связи с чем, оружие получило это название. Причиной этому стала то ли популярность песни Блантера, то ли буква «К» на корпусе миномёта. Со временем фронтовики стали давать прозвища и другому оружию, создав, таким образом, новую традицию. Немцы же эту боевую ракетную установку называли «сталинским органом» за внешний вид, который напоминал музыкальный инструмент и пронзительный звук, который исходил от стартующих ракет.

Растительный мир

Представителями фауны также используются законы реактивного движения. Большую часть растений, обладающих такими свойствами составляют однолетники и малолетники: колючеплодник, чесночница черешчатая, сердечник недотрога, пикульник двунадрезный, мёрингия трёхжилковая.

Колючеплодник, иначе бешеный огурец, относят к семейству тыквенных. Это растение достигает больших размеров, имеет толстый корень с шершавым стеблем и крупными листьями. Произрастает на территории Средней Азии, Средиземноморья, на Кавказе, довольно распространен на юге России и Украины. Внутри плода в период созревания семян преобразуется в слизь, которая под действием температур начинает бродить и выделять газ. Ближе к созреванию давление внутри плода может достигнуть 8 атмосфер. Тогда при легком прикосновении плод отрывается от основания и семена с жидкостью со скоростью 10 м/с вылетают из плода. Благодаря способности стрелять на 12 м. в длину, растение назвали «дамский пистолет».

Сердечник недотрога — однолетний широко распространённый вид. Встречается, как правило, в тенистых лесах, по берегам вдоль рек. Попав в северо-восточную часть Северной Америки и в Южную Африку, благополучно прижился. Сердечник-недотрога размножается семенами. Семена у сердечника-недотроги мелкие, массой не более 5 мг, которые отбрасываются на расстояние в 90 см. Благодаря такому способу распространения семян, растение и получило свое название.

Животный мир

Реактивное движение — интересные факты, касающиеся животного мира. У головоногих моллюсков реактивное перемещение происходит посредством воды, выдыхаемой через сифон, который обычно сужается к небольшому отверстию для получения максимальной скорости выдоха. Вода через жабры проходит до выдоха, выполняя двойную цель дыхания и перемещения. Морские зайцы, иначе брюхоногие моллюски, используют аналогичные средства движения, но без сложного неврологического аппарата головоногих, они перемещаются более неуклюже.

Некоторые рыбы-рыцари также развили реактивное перемещение, пропуская воду через жабры, чтобы дополнить плавниковое движение.

У личинок стрекоз реактивная сила достигается путем вытеснения воды из специализированной полости в организме. Морские гребешки и кардиды, сифонофоры, туники (такие, как сальпы) и некоторые медузы, также используют реактивную тягу.

Большую часть времени морские гребешки спокойно лежат на дне, но в случае появления опасности, быстро смыкают створки своей раковины, так они выталкивают воду. Этот механизм поведения тоже говорит об использовании принципа реактивного перемещения. Благодаря ему, гребешки могут всплывать и перемещаться на большое расстояние, применяя технику открытия-закрытия раковины.

Кальмар также применяет этот метод, вбирает в себя воду, а затем с огромной силой проталкивая через воронку движется скоростью не менее 70 км./ч. Собирая щупальцы в один узел, тело кальмара образует обтекаемую форму. Взяв за основу такой двигатель кальмара, инженерами был сконструирован водомет. Вода в нем засасывается в камеру, а после выбрасывается через сопло. Таким образом, судно направляется в обратную сторону от выбрасываемой струи.

Если сравнить с кальмарами, наиболее эффективными двигателями пользуются сальпы, тратя на порядок меньше энергии, чем кальмары. Двигаясь сальпа запускает воду в отверстие спереди, а затем поступает в широкую полость, где натянуты жабры. После глотка отверстие закрывается, а с помощью сокращающихся продольных и поперечных мускул, которые сжимают тело, происходит выброс воды через отверстие сзади.

Самым необычным из всех механизмов передвижения может похвастаться обыкновенная кошка. Марсель Депре высказал предположение, что тело способно двигаться и изменять свое положение даже с помощью одних только внутренних сил (ни от чего не отталкиваясь и ни на что не опираясь), из чего можно было сделать вывод, что законы Ньютона могут быть ошибочны. Доказательством его предположению могла послужить кошка, которая сорвалась с высоты. Во время падения вниз головой, она все равно приземлится на все лапы, это стало уже своего рода аксиомой. Детально сфотографировав перемещение кошки, смогли по кадрам рассмотреть, все, что она проделывала в воздухе. Увидели ее движение лапой, которое вызвало ответную реакцию туловища, поворачиваясь в другую сторону относительно движения лапки. Действуя по законам Ньютона, кошка удачно приземлилась.

У животных все происходит на уровне инстинкта, человек в свою очередь делает сознательно. Профессиональные пловцы, прыгнув с вышки успевают трижды обернуться в воздухе, и сумев приостановить вращение, выпрямляются строго вертикально и ныряют в воду. Этот же принцип действует в отношении воздушных цирковых гимнастов.

Сколько бы человек не пытался превзойти природу, совершенствуя созданные ею изобретения, все равно мы пока не достигли того технологического совершенства, когда бы самолеты могли повторить действия стрекозы: зависать в воздухе, мгновенно подаваться назад или двигаться в сторону. Причем все это происходит на большой скорости. Возможно, пройдет еще немного времени и самолеты, благодаря поправкам на особенности аэродинамики и реактивные возможности стрекоз, смогут совершать крутые развороты и станут менее восприимчивы к внешним условиям. Подсмотрев у природы, человек еще многое может усовершенствовать на благо технического прогресса.

Среди великих технических и научных достижений XX столетия одно из первых мест, несомненно, принадлежит ракетам и теории реактивного движения . Годы второй мировой войны (1941-1945) привели к необычайно быстрому совершенствованию конструкций реактивных аппаратов. На полях сражений вновь появились пороховые ракеты, но уже на более калорийном бездымном тротилпироксилиновом порохе («катюши»). Были созданы самолеты с воздушно-реактивными двигателями, беспилотные самолеты с пульсирующими воздушно-реактивными двигателями («ФАУ-1») и баллистические ракеты с дальностью полета до 300 км («ФАУ-2»).

Ракетная-техника становится сейчас очень важной и быстрорастущей отраслью промышленности. Развитие теории полета реактивных аппаратов — одна из насущных проблем современного научно-технического развития.

К. Э. Циолковский много сделал для познания основ теории движения ракет . Он был первым в истории науки, кто формулировал и исследовал проблему изучения прямолинейных движений ракет, исходя из законов теоретической механики. Как мы указывали, принцип сообщения движения, при помощи сил реакции отбрасываемых частиц был осознан Циолковским еще в 1883 году, однако создание им математически строгой теории реактивного движения относится к концу XIX столетия.

В одной из своих работ Циолковский писал: «Долго на ракету я смотрел, как и все: с точки зрения увеселений и маленьких применений. Не помню хорошо, как мне пришло в голову сделать вычисления, относящиеся к ракете. Мне кажется, первые семена мысли были заронены известным фантазером Жюлем Верном; он пробудил работу моего мозга в известном направлении. Явились желания, за желаниями возникла деятельность ума. …Старый листок с окончательными формулами, относящимися к реактивному прибору, помечен датою 25 августа 1898 года».

«…Никогда я не претендовал на полное решение вопроса. Сначала неизбежно идут: мысль, фантазия, сказка. За ними шествует научный расчет. И уже в конце концов исполнение венчает мысль. Мои работы о космических путешествиях относятся к средней фазе творчества. Более, чем кто-нибудь, я понимаю бездну, разделяющую идею от ее осуществления, так как в течение моей жизни я не только мыслил и вычислял, но и исполнял, работая также руками. Однако нельзя не быть идее: исполнению предшествует мысль, точному расчету — фантазия».

В 1903 году в журнале «Научное обозрение» появилась первая статья Константина Эдуардовича по ракетной технике, которая называлась «Исследование мировых пространств реактивными приборами». В этом труде на основании простейших законов теоретической механики (закона сохранения количества движения и закона независимого действия сил) была дана теория полета ракеты и обоснована возможность применения реактивных аппаратов для межпланетных сообщений (Создание общей теории движения тел, масса которых изменяется в процессе движения, принадлежит профессору И. В. Мещерскому (1859-1935)).

Идея применения ракеты для решения научных проблем, использование реактивных двигателей для создания движения грандиозных межпланетных кораблей целиком принадлежат Циолковскому. Он родоначальник современных жидкостных ракет дальнего действия, один из создателей новой главы теоретической механики.

Классическая механика, изучающая законы движения и равновесия материальных тел, базируется на трех законах движения , отчетливо и строго сформулированных английским ученым еще в 1687 году. Эти законы применялись многими исследователями для изучения движения тел, масса которых не изменялась во время движения. Были рассмотрены очень важные случаи движения и создалась большая наука — механика тел постоянной массы. Аксиомы механики тел постоянной массы, или законы движения Ньютона, явились обобщением всего предыдущего развития механики. В настоящее время основные законы механического движения излагаются во всех учебниках физики для средней школы. Мы дадим здесь краткое изложение законов движения Ньютона, так как последующий шаг в науке, позволивший изучать движение ракет, был дальнейшим развитием методов классической механики.

>>Физика: Реактивное движение

Законы Ньютона позволяют объяснить очень важное механическое явление —реактивное движение. Так называют движение тела, возникающее при отделении от него с какой-либо скоростью некоторой его части.

Возьмем, например, детский резиновый шарик, надуем его и отпустим. Мы увидим, что, когда воздух начнет выходить из него в одну сторону, сам шарик полетит в другую. Это и есть реактивное движение.

По принципу реактивного движения передвигаются некоторые представители животного мира, например кальмары и осьминоги. Периодически выбрасывая вбираемую в себя воду, они способны развивать скорость до 60-70 км/ч. Аналогичным образом перемещаются медузы, каракатицы и некоторые другие животные.

Примеры реактивного движения можно обнаружить и в мире растений. Например, созревшие плоды «бешеного» огурца при самом легком прикосновении отскакивают от плодоножки и из отверстия, образовавшегося на месте отделившейся ножки, с силой выбрасывается горькая жидкость с семенами, сами огурцы при этом отлетают в противоположном направлении.

Реактивное движение, возникающее при выбросе воды, можно наблюдать на следующем опыте. Нальем воду в стеклянную воронку, соединенную с резиновой трубкой, имеющей Г-образный наконечник (рис. 20). Мы увидим, что, когда вода начнет выливаться из трубки, сама трубка придет в движение и отклонится в сторону, противоположную направлению вытекания воды.

На принципе реактивного движения основаны полеты ракет . Современная космическая ракета представляет собой очень сложный летательный аппарат, состоящий из сотен тысяч и миллионов деталей. Масса ракеты огромна Она складывается из массы рабочего тела (т. е. раскаленных газов, образующихся в результате сгорания топлива и выбрасываемых в виде реактивной струи) и конечной или, как говорят, «сухой» массы ракеты, остающейся после выброса из ракеты рабочего тела.

«Сухая» масса ракеты, в свою очередь, состоит из массы конструкции (т. е. оболочки ракеты, ее двигателей и системы управления) и массы полезной нагрузки (т. е. научной аппаратуры, корпуса выводимого на орбиту космического аппарата, экипажа и системы жизнеобеспечения корабля).

По мере истечения рабочего тела освободившиеся баки, лишние части оболочки и т. д. начинают обременять ракету ненужным грузом, затрудняя ее разгон. Поэтому для достижения космических скоростей применяют составные (или многоступенчатые) ракеты (рис. 21). Сначала в таких ракетах работают лишь блоки первой ступени 1. Когда запасы топлива в них кончаются, они отделяются и включается вторая ступень 2; после исчерпания в ней топлива она также отделяется и включается третья ступень 3. Находящийся в головной части ракеты спутник или какой-либо другой космический аппарат укрыт головным обтекателем 4, обтекаемая форма которого способствует уменьшению сопротивления воздуха при полете ракеты в атмосфере Земли.

Когда реактивная газовая струя с большой скоростью выбрасывается из ракеты, сама ракета устремляется в противоположную сторону. Почему это происходит?

Согласно третьему закону Ньютона, сила F, с которой ракета действует на рабочее тело, равна по величине и противоположна по направлению силе F», с которой рабочее тело действует на корпус ракеты:
F» = F (12.1)
Сила F» (которую называют реактивной силой) и разгоняет ракету.

Отослано читателями из интернет-сайтов

Онлайн библиотека с учебниками и книгами, планы-конспекты уроков по физике 8 класса, скачать тесты физика, книги и учебники согласно каленадарного планирования физики 8 класса

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Реактивное движение в природе и в технике — весьма распространенное явление. В природе оно возникает, когда одна часть тела отделяется с определенной скоростью от некоторой другой части. При этом реактивная сила появляется без взаимодействия данного организма с внешними телами.

Для того чтобы понять, о чем идет речь, лучше всего обратиться к примерам. в природе и технике многочисленны. Сначала мы поговорим о том, как его используют животные, а затем о том, как оно применяется в технике.

Медузы, личинки стрекоз, планктон и моллюски

Многие, купаясь в море, встречали медуз. В Черном море их, во всяком случае, хватает. Однако не все задумывались, что передвигаются медузы как раз с помощью реактивного движения. К этому же способу прибегают и личинки стрекоз, а также некоторые представители морского планктона. КПД беспозвоночных морских животных, которые используют его, зачастую намного выше, чем у технических изобретений.

Многие моллюски передвигаются интересующим нас способом. В качестве примера можно привести каракатиц, кальмаров, осьминогов. В частности, морской моллюск-гребешок способен двигаться вперед, используя реактивную струю воды, которая выбрасывается из раковины, когда ее створки резко сжимаются.

И это лишь несколько примеров из жизни животного мира, которые можно привести, раскрывая тему: «Реактивное движение в быту, природе и технике».

Как передвигается каракатица

Весьма интересна в этом отношении и каракатица. Подобно множеству головоногих моллюсков, она передвигается в воде, используя следующий механизм. Через особую воронку, находящуюся впереди тела, а также через боковую щель каракатица забирает воду в свою жаберную полость. Затем она ее энергично выбрасывает через воронку. Трубку воронки каракатица направляет назад или вбок. Движение при этом может осуществляться в разные стороны.

Способ, который использует сальпа

Любопытен и способ, который использует сальпа. Так называется морское животное, имеющее прозрачное тело. Сальпа при движении втягивает воду, используя для этого переднее отверстие. Вода оказывается в широкой полости, а внутри нее по диагонали расположены жабры. Отверстие закрывается тогда, когда сальпа делает большой глоток воды. Ее поперечные и продольные мускулы сокращаются, сжимается все тело животного. Сквозь заднее отверстие вода выталкивается наружу. Животное двигается вперед благодаря реакции вытекающей струи.

Кальмары — «живые торпеды»

Самый большой интерес представляет, пожалуй, реактивный двигатель, который есть у кальмара. Это животное считается наиболее крупным представителем беспозвоночных, обитающим на больших океанских глубинах. В реактивной навигации кальмары достигли настоящего совершенства. Даже тело этих животных напоминает ракету своими внешними формами. Вернее сказать, это ракета копирует кальмара, так как именно ему принадлежит бесспорное первенство в этом деле. Если нужно передвигаться медленно, животное использует для этого большой ромбовидный плавник, который время от времени изгибается. Если же необходим быстрый бросок, на помощь приходит реактивный двигатель.

Со всех сторон тело моллюска окружает мантия — мышечная ткань. Практически половина всего объема тела животного приходится на объем ее полости. Кальмар использует мантийную полость для движения, засасывая воду внутрь нее. Затем он резко выбрасывает набранную струю воды сквозь узкое сопло. В результате этого он двигается толчками назад с большой скоростью. При этом кальмар складывает все свои 10 щупалец в узел над головой для того, чтобы приобрести обтекаемую форму. В составе сопла есть особый клапан, и мышцы животного могут поворачивать его. Тем самым направление движения меняется.

Впечатляющая скорость движения кальмара

Нужно сказать, что двигатель кальмара весьма экономичен. Скорость, которую он способен развивать, может достигать 60-70 км/ч. Некоторые исследователи даже полагают, что она может доходить до 150 км/ч. Как вы видите, кальмар не зря зовется «живой торпедой». Он может поворачивать в нужную сторону, изгибая вниз, вверх, влево или вправо щупальца, сложенные пучком.

Как кальмар управляет движением

Так как по сравнению с размерами самого животного руль очень велик, для того чтобы кальмар мог легко избежать столкновения с препятствием, даже двигаясь с максимальной скоростью, достаточно лишь незначительного движения руля. Если его резко повернуть, животное тут же помчится в обратную сторону. Кальмар изгибает назад конец воронки и в результате этого может скользить уже головой вперед. Если он выгнет ее вправо, он будет отброшен влево реактивным толчком. Однако когда плыть необходимо быстро, воронка всегда находится прямо между щупальцами. Животное в этом случае мчится хвостом вперед, подобно бегу рака-скорохода, если бы он обладал резвостью скакуна.

В случае когда спешить не требуется, каракатицы и кальмары плавают, ундулируя при этом плавниками. Спереди назад пробегают по ним миниатюрные волны. Кальмары и каракатицы грациозно скользят. Они лишь время от времени подталкивают себя струей воды, которая выбрасывается из-под их мантии. Отдельные толчки, которые моллюск получает при извержении струй воды, в такие моменты хорошо заметны.

Летающий кальмар

Некоторые головоногие способны ускоряться до 55 км/ч. Кажется, никто не осуществлял прямых измерений, однако такую цифру мы можем назвать, основываясь на дальности и скорости полета летающих кальмаров. Оказывается, существуют и такие. Кальмар стенотевтис является лучшим пилотом из всех моллюсков. Английские моряки именуют его летающим кальмаром (флайинг-сквид). Это животное, фото которого представлено выше, имеет небольшие размеры, примерно с селедку. Он так стремительно преследует рыб, что часто выскакивает из воды, проносясь стрелой над ее поверхностью. Такую уловку он использует и в случае, когда ему угрожает опасность от хищников — макрелей и тунцов. Развив максимальную реактивную тягу в воде, кальмар стартует в воздух, а затем пролетает более 50 метров над волнами. При его полета находится так высоко, что часто летающие кальмары попадают на палубы судов. Высота 4-5 метров для них — отнюдь не рекорд. Иногда летающие кальмары взлетают даже выше.

Доктор Рис, исследователь моллюсков из Великобритании, в своей научной статье описал представителя этих животных, длина тела которого составляла всего 16 см. Однако при этом он смог пролететь изрядное расстояние по воздуху, после чего приземлился на мостик яхты. А высота этого мостика составляла практически 7 метров!

Бывают случаи, когда на корабль обрушивается сразу множество летающих кальмаров. Требиус Нигер, античный писатель, однажды рассказал печальную историю о судне, которое как будто бы не смогло выдержать тяжесть этих морских животных и затонуло. Интересно, что кальмары способны взлетать даже без разгона.

Летающие осьминоги

Способностью летать обладают также осьминоги. Жан Верани, французский натуралист, наблюдал, как один из них разогнался в своем аквариуме, а затем внезапно выскочил из воды. Животное описало в воздухе дугу примерно в 5 метров, а затем плюхнулось в аквариум. Осьминог, набирая необходимую для прыжка скорость, двигался не только благодаря реактивной тяге. Он также греб своими щупальцами. Осьминоги мешковаты, поэтому они плавают хуже кальмаров, однако в критические минуты и эти животные способны дать фору лучшим спринтерам. Работники Калифорнийского аквариума хотели сделать фото осьминога, который атакует краба. Однако спрут, бросаясь на свою добычу, развивал такую скорость, что фотографии даже при использовании специального режима оказывались смазанными. Это означает, что бросок длился считанные доли секунды!

Однако осьминоги обычно плавают довольно медленно. Ученый Джозеф Сайнл, который исследовал миграции спрутов, выяснил, что осьминог, размер которого составляет 0,5 м, плывет со средней скоростью примерно 15 км/ч. Каждая струя воды, которую он выбрасывает из воронки, продвигает его вперед (точнее сказать, назад, поскольку он плывет задом наперед) где-то на 2-2,5 м.

«Бешеный огурец»

Реактивное движение в природе и в технике можно рассматривать и используя для его иллюстрации примеры из мира растений. Один из самых известных — созревшие плоды так называемого Они отскакивают от плодоножки при малейшем прикосновении. Затем из образовавшегося в результате этого отверстия с большой силой выбрасывается специальная клейкая жидкость, в которой находятся семена. Сам огурец отлетает в противоположную сторону на расстояние до 12 м.

Закон сохранения импульса

Обязательно следует рассказать и о нем, рассматривая реактивное движение в природе и в технике. Знание закона сохранения импульса позволяет нам изменять, в частности, нашу собственную скорость перемещения, если мы находимся в открытом пространстве. К примеру, вы сидите в лодке и у вас с собой есть несколько камней. Если вы будете бросать их в определенную сторону, движение лодки будет осуществляться в противоположном направлении. В космическом пространстве также действует этот закон. Однако там с этой целью применяют

Какие еще можно отметить примеры реактивного движения в природе и технике? Очень хорошо иллюстрируется на примере ружья.

Как известно, выстрел из него всегда сопровождается отдачей. Допустим, вес пули был бы равен весу ружья. В этом случае они бы разлетелись в стороны с одной и той же скоростью. Отдача бывает потому, что создается реактивная сила, так как имеется отбрасываемая масса. Благодаря этой силе обеспечивается движение как в безвоздушном пространстве, так и в воздухе. Чем больше скорость и масса истекающих газов, тем сила отдачи, которую ощущает наше плечо, больше. Соответственно, реактивная сила тем выше, чем сильнее реакция ружья.

Мечты о полетах в космос

Реактивное движение в природе и в технике вот уже долгие годы является источником новых идей для ученых. Много столетий человечество грезило о полетах в космос. Применение реактивного движения в природе и технике, нужно полагать, отнюдь не исчерпало себя.

А началось все с мечты. Писатели-фантасты несколько веков назад предлагали нам различные средства, как достигнуть этой желанной цели. В 17 веке Сирано де Бержерак, французский писатель, создал рассказ о полете на Луну. Его герой добрался до спутника Земли, используя железную повозку. Над этой конструкцией он постоянно подбрасывал сильный магнит. Повозка, притягиваясь к нему, поднималась над Землей все выше и выше. В конце концов, она достигла Луны. Другой известный персонаж, барон Мюнхгаузен, залез на Луну по стеблю боба.

Конечно, в это время еще было мало известно о том, как применение реактивного движения в природе и технике способно облегчить жизнь. Но полет фантазии, безусловно, открывал новые горизонты.

На пути к выдающемуся открытию

В Китае в конце 1 тысячелетия н. э. изобрели реактивное движение, приводящее в действие ракеты. Последние были просто бамбуковыми трубками, которые были начинены порохом. Эти ракеты запускались ради забавы. Реактивный двигатель использовался в одном из первых проектов автомобилей. Эта идея принадлежала Ньютону.

О том, как реактивное движение в природе и в технике возникает, задумывался и Н.И. Кибальчич. Это русский революционер, автор первого проекта реактивного летательного аппарата, который предназначен для полета на нем человека. Революционер, к сожалению, был казнен 3 апреля 1881 года. Кибальчича обвинили в том, что он участвовал в покушении на Александра II. Уже в тюрьме, в ожидании исполнения смертного приговора, он продолжал изучать такое интересное явление, как реактивное движение в природе и в технике, возникающее при отделении части объекта. В результате этих изысканий он разработал свой проект. Кибальчич писал, что эта идея поддерживает его в его положении. Он готов спокойно встретить свою смерть, зная, что столь важное открытие не погибнет вместе с ним.

Реализация идеи полета в космос

Проявление реактивного движения в природе и технике продолжил изучать К. Э. Циолковский (фото его представлено выше). Еще в начале 20 века этот великий русский ученый предложил идею использования ракет в целях космических полетов. Его статья, посвященная этому вопросу, появилась в 1903 году. В ней было представлено математическое уравнение, ставшее важнейшим для космонавтики. Оно известно в наше время как «формула Циолковского». Это уравнение описывало движение тела, имеющего переменную массу. В своих дальнейших трудах он представил схему ракетного двигателя, работающего на жидком топливе. Циолковский, изучая использование реактивного движения в природе и технике, разработал многоступенчатую конструкцию ракеты. Ему также принадлежит идея о возможности создания на околоземной орбите целых космических городов. Вот к каким открытиям пришел ученый, изучая реактивное движение в природе и технике. Ракеты, как показал Циолковский, — это единственные аппараты, которые могут преодолеть Ракету он определил как механизм, имеющий реактивный двигатель, который использует находящееся на нем горючее и окислитель. Этот аппарат трансформирует химическую энергию топлива, которая становится кинетической энергией газовой струи. Сама ракета при этом начинает двигаться в обратном направлении.

Наконец, ученые, изучив реактивное движение тел в природе и технике, перешли к практике. Предстояла масштабная задача реализации давней мечты человечества. И группа советских ученых, возглавляемая академиком С. П. Королевым, справилась с ней. Она осуществила идею Циолковского. Первый искусственный спутник нашей планеты был запущен в СССР 4 октября 1957 г. Естественно, при этом использовалась ракета.

Ю. А. Гагарин (на фото выше) был человеком, которому выпала честь первым осуществить полет в космическом пространстве. Это важное для мира событие произошло 12 апреля 1961 года. Гагарин на корабле-спутнике «Восток» облетел весь земной шар. СССР был первым государством, ракеты которого достигли Луны, облетели вокруг нее и сфотографировали сторону, невидимую с Земли. Кроме того, и на Венере впервые побывали именно русские. Они доставили на поверхность этой планеты научные приборы. Американский астронавт Нил Армстронг — первый человек, побывавший на поверхности Луны. Он высадился на нее 20 июля 1969 года. В 1986 году «Вега-1» и «Вега-2» (корабли, принадлежащие СССР) исследовали с близкого расстояния комету Галлея, которая приближается к Солнцу всего лишь раз в 76 лет. Изучение космоса продолжается…

Как вы видите, очень важной и полезной наукой является физика. Реактивное движение в природе и технике — это лишь один из интересных вопросов, которые рассматриваются в ней. А достижения этой науки весьма и весьма значительны.

Как в наши дни используется реактивное движение в природе и в технике

В физике в последние несколько столетий были сделаны особенно важные октрытия. В то время как природа остается практически неизменной, техника развивается стремительными темпами. В наше время принцип реактивного движения широко применяется не только различными животными и растениями, но также в космонавтике и в авиации. В космическом пространстве отсутствует среда, которую тело могло бы использовать для взаимодействия, чтобы изменить модуль и направление своей скорости. Именно поэтому для полетов в безвоздушном пространстве можно использовать лишь ракеты.

Сегодня активно используется реактивное движение в быту, природе и технике. Оно уже не является загадкой, как раньше. Однако человечество не должно останавливаться на достигнутом. Впереди новые горизонты. Хочется верить, что реактивное движение в природе и технике, кратко охарактеризованное в статье, вдохновит кого-то на новые открытия.

Реактивное движение в технике кратко. Физика. Реактивное движение в природе и в технике. Реактивные импульсы нервной «автострады» кальмаров

Для большинства людей термин «реактивное движение» представляется в виде современного прогресса в науке и технике, особенно в области физики. Реактивное движение в технике ассоциируется у многих с космическими кораблями, спутниками и реактивной авиатехникой. Оказывается, явление реактивного движения существовало намного раньше, чем сам человек, и независимо от него. Люди лишь сумели понять, воспользоваться и развить то, что подчинено законам природы и мироздания.

Что такое реактивное движение?

На английском языке слово «реактивный» звучит как «jet». Под ним подразумевается движение тела, которое образуется в процессе отделения от него части с определенной скоростью. Проявляется сила, которая двигает тело в обратную сторону от направления движения, отделяя от него часть. Каждый раз, когда материя вырывается из предмета, а предмет при этом движется в обратном направлении, наблюдается реактивное движение. Для того чтобы поднимать предметы в воздух, инженеры должны спроектировать мощную реактивную установку. Выпуская струи пламени, двигатели ракеты поднимают ее на орбиту Земли. Иногда ракеты запускают спутники и космические зонды.

Что касается авиалайнеров и военных самолетов, то принцип их работы чем-то напоминает взлет ракеты: физическое тело реагирует на выбрасываемую мощную струю газа, в результате чего оно движется в противоположную сторону. Это и есть основной принцип работы реактивных самолетов.

Законы Ньютона в реактивном движении

Инженеры основывают свои разработки на принципах устройства мироздания, впервые подробно описанных в работах выдающегося британского ученого Исаака Ньютона, жившего в конце 17 столетия. Законы Ньютона описывают механизмы гравитации и рассказывают нам о том, что происходит, когда предметы движутся. Они особенно четко объясняют движение тел в пространстве.

Второй закон Ньютона определяет, что сила движущегося предмета зависит от того, сколько материи он вмещает, иными словами, его массы и изменения скорости движения (ускорения). Значит, чтобы создать мощную ракету, необходимо, чтобы она постоянно выпускала большое количество высокоскоростной энергии. Третий закон Ньютона говорит о том, что на каждое действие будет равная по силе, но противоположная реакция — противодействие. Реактивные двигатели в природе и технике подчиняются этим законам. В случае с ракетой сила действия — материя, которая вылетает из выхлопной трубы. Противодействием является толчок ракеты вперед. Именно сила выбросов из нее толкает ракету. В космосе, где ракета практически не имеет веса, даже незначительный толчок от ракетных двигателей способен заставить большой корабль быстро лететь вперед.

Техника, использующая реактивное движение

Физика реактивного движения состоит в том, что ускорение или торможение тела происходит без влияния окружающих тел. Процесс происходит вследствие отделения части системы.

Примеры реактивного движения в технике — это:

  1. явление отдачи от выстрела;
  2. взрывы;
  3. удары во время аварий;
  4. отдача при использовании мощного брандспойта;
  5. катер с водометным двигателем;
  6. реактивный самолет и ракета.

Тела создают закрытую систему, если они взаимодействуют лишь друг с другом. Такое взаимодействие может привести к изменению механического состояния тел, образующих систему.

В чем заключается действие закона сохранения импульса?

Впервые этот закон был оглашен французским философом и физиком Р. Декартом. При взаимодействии двух или больше тел образовывается между ними замкнутая система. Любое тело при движении обладает своим импульсом. Это масса тела, умноженная на его скорость. Общий импульс системы равен векторной сумме импульсов тел, находящихся в ней. Импульс любого из тел внутри системы меняется вследствие их взаимного влияния. Общий импульс тел, находящихся в замкнутой системе, остается неизменным при различных перемещениях и взаимодействиях тел. В этом состоит закон сохранения импульса.

Примерами действия этого закона могут быть любые столкновения тел (бильярдных шаров, автомобилей, элементарных частиц), а также разрывы тел и стрельба. При выстреле из оружия происходит отдача: снаряд мчится вперед, а само оружие отталкивается назад. Из-за чего это происходит? Пуля и оружие формируют между собой замкнутую систему, где работает закон сохранения импульса. При стрельбе импульсы самого оружия и пули меняются. Но суммарный импульс оружия и находящейся в нем пули перед выстрелом будет равен суммарному импульсу откатывающегося оружия и выпущенной пули после стрельбы. Если бы пуля и ружье имели одинаковую массу, они бы разлетелись в противоположные стороны с одинаковой скоростью.

Закон сохранения импульса имеет широкое практическое применение. Он позволяет объяснить реактивное движение, благодаря которому достигаются наивысшие скорости.

Реактивное движение в физике

Самым ярким образцом закона сохранения импульса служит реактивное движение, осуществляемое ракетой. Важнейшей частью двигателя выступает камера сгорания. В одной из ее стенок находится реактивное сопло, приспособленное для выпуска газа, возникающего при сжигании топлива. Под действием высокой температуры и давления газ на огромной скорости выходит из сопла двигателя. Перед стартом ракеты ее импульс относительно Земли равняется нулю. В момент запуска ракета также получает импульс, который равняется импульсу газа, но противоположный по направлению.

Пример физики реактивного движения можно увидеть везде. Во время празднования дня рождения воздушный шарик вполне может стать ракетой. Каким образом? Надуйте воздушный шар, зажимая открытое отверстие, чтобы воздух не выходил из него. Теперь отпустите его. Воздушный шар с огромной скоростью будет гонять по комнате, подгоняемый воздухом, вылетающим из него.

История реактивного движения

История реактивных двигателей началась еще за 120 лет до н.э., когда Герон Александрийский сконструировал первый реактивный двигатель — эолипил. В металлический шар наливают воду, которая нагревается огнем. Пар, который вырывается из этого шара, вращает ее. Это устройство показывает реактивное движение. Двигатель Герона жрецы успешно применяли для открывания и закрывания дверей храма. Модификация эолипила — Сегнерово колесо, которое эффективно используется в наше время для полива сельскохозяйственных угодий. В 16-м столетии Джовани Бранка представил миру первую паровую турбину, которая работала на принципе реактивного движения. Исаак Ньютон предложил один из первых проектов парового автомобиля.

Первые попытки использования реактивного движения в технике для перемещения по земле относят к 15-17 столетиям. Еще 1000 лет назад китайцы имели ракеты, которые использовали как военное оружие. Например, в 1232 году, согласно хронике, в войне с монголами они использовали стрелы, оборудованные ракетами.

Первые попытки построения реактивного самолета начались еще в 1910 году. За основу были взяты ракетные исследования прошлых веков, где подробно повествовалось об использовании пороховых ускорителей, способных существенно сократить длину форсажа и разбега. Главным конструктором стал румынский инженер Анри Коанда, построивший летательный аппарат, работающий на основе поршневого двигателя. Первооткрывателем реактивного движения в технике по праву можно назвать инженера из Англии — Фрэнка Уитла, который предложил первые идеи по созданию реактивного двигателя и получил на них свой патент в конце XIX века.

Первые реактивные двигатели

Впервые разработкой реактивного двигателя в России занялись в начале 20 столетия. Теорию движения реактивных аппаратов и ракетной техники, способных развить сверхзвуковую скорость, выдвинул известный российский ученый К. Э. Циолковский. Воплотить эту задумку в жизнь удалось талантливому конструктору А. М. Люльке. Именно он создал проект первого в СССР реактивного самолета, работающего с помощью реактивной турбины. Первые реактивные самолеты были созданы немецкими инженерами. Создание проектов и производство проводились тайно на замаскированных заводах. Гитлер со своей идеей стать мировым правителем, подключал лучших конструкторов Германии для производства мощнейшего оружия, в том числе и высокоскоростных самолетов. Наиболее успешным из них стал первый немецкий реактивный самолет «Мессершмитт-262». Этот летательный аппарат стал первым в мире, который успешно вынес все испытания, свободно поднялся в воздух и стал после этого выпускаться серийно.

Самолет обладал такими особенностями:

  • Аппарат имел два турбореактивных двигателя.
  • В носовой части располагался радиолокатор.
  • Максимальная скорость самолета достигала 900 км/час.

Благодаря всем этим показателям и конструктивным особенностям первый реактивный летательный аппарат «Мессершмитт-262» был грозным средством борьбы против других самолетов.

Прототипы современных авиалайнеров

В послевоенное время российскими конструкторами были созданы реактивные самолеты, ставшие в дальнейшем прототипами современных авиалайнеров.

И-250, более известный как легендарный МиГ-13, — истребитель, над которым трудился А. И. Микоян. Первый полет был произведен весной 1945 года, на то время реактивный истребитель показал рекордную скорость, достигшую 820 км/час. Запущены были в производство реактивные самолеты МиГ-9 и Як-15 .

В апреле 1945 года впервые в небо поднялся реактивный самолет П. О. Сухого — Су-5, поднимающийся и летающий за счет воздушно-реактивного мотокомпрессорного и поршневого двигателя, расположенного в хвостовой части конструкции.

После окончания войны и капитуляции фашистской Германии Советскому Союзу в качестве трофеев достались немецкие самолеты с реактивными двигателями JUMO-004 и BMW-003.

Первые мировые прототипы

Разработкой, тестированием новых авиалайнеров и их производством занимались не только немецкие и советские конструкторы. Инженерами США, Италии, Японии, Великобритании также было создано немало успешных проектов, применяемых реактивное движение в технике. К числу первых разработок с различными типами двигателей можно отнести:

  • Не-178 — немецкий самолет с турбореактивной силовой установкой, поднявшийся в воздух в августе 1939 года.
  • GlosterE. 28/39 — летательный аппарат родом из Великобритании, с мотором турбореактивного типа, впервые поднялся в небо в 1941 году.
  • Не-176 — истребитель, созданный в Германии с применением ракетного двигателя, осуществил свой первый полет в июле 1939 года.
  • БИ-2 — первый советский летательный аппарат, который приводился в движение посредством ракетной силовой установки.
  • CampiniN.1 — реактивный самолет, созданный в Италии, ставший первой попыткой итальянских конструкторов отойти от поршневого аналога.
  • Yokosuka MXY7 Ohka («Ока») с мотором Tsu-11 — японский истребитель-бомбардировщик, так называемый одноразовый летательный аппарат с пилотом-камикадзе на борту.

Использование реактивного движения в технике послужило резким толчком для быстрого создания следующих реактивных летательных аппаратов и дальнейшего развития военного и гражданского самолетостроения.

  1. GlosterMeteor — воздушно-реактивный истребитель, изготовленный в Великобритании в 1943 году, сыграл существенную роль во Второй Мировой войне, а после ее завершения выполнял задачу перехватчика немецких ракет «Фау-1».
  2. LockheedF-80 — реактивный летательный аппарат, произведенный в США с применением мотора типа AllisonJ. Эти самолеты не раз участвовали в японско-корейской войне.
  3. B-45 Tornado — прототип современных американских бомбардировщиков B-52, созданный в 1947 году.
  4. МиГ-15 — последователь признанного реактивного истребителя МиГ-9, который активно участвовал в военном конфликте в Корее, был произведен в декабре 1947 г.
  5. Ту-144 — первый советский сверхзвуковой воздушно-реактивный пассажирский самолет.

Современные реактивные аппараты

С каждым годом авиалайнеры совершенствуются, ведь конструкторы со всего мира работают над тем, чтобы создавать аппараты нового поколения, способные летать со скоростью звука и на сверхзвуковых скоростях. Сейчас существуют лайнеры, способные вмещать большое количество пассажиров и грузов, обладающие огромными размерами и невообразимой скоростью свыше 3000 км/час, военная авиатехника, оборудованная современной боевой экипировкой.

Но среди этого многообразия имеются несколько конструкций реактивных самолетов-рекордсменов:

  1. Airbus A380 — самый вместительный аппарат, способный принять на своем борту 853 пассажира, что обеспечено двухпалубной конструкцией. Он же по совместительству один из роскошных и дорогостоящих авиалайнеров современности. Самый крупный пассажирский лайнер в воздухе.
  2. Boeing 747 — более 35 лет считался самым вместительным двухэтажным лайнером и мог перевозить 524 пассажира.
  3. АН-225 «Мрия» — грузовой летательный аппарат, который может похвастаться грузоподъемностью в 250 тонн.
  4. LockheedSR-71 — реактивный самолет, достигающий во время полета скорости 3529 км/час.

Авиационные исследования не стоят на месте, потому как реактивные самолеты — это основа стремительно развивающейся современной авиации. Сейчас проектируется несколько западных и российских пилотируемых, пассажирских, беспилотных авиалайнеров с реактивными двигателями, выпуск которых запланирован на ближайшие несколько лет.

К российским инновационным разработкам будущего можно отнести истребитель 5-го поколения ПАК ФА — Т-50, первые экземпляры которого поступят в войска предположительно в конце 2017 или начале 2018 года после испытания нового реактивного двигателя.

Природа — пример реактивного движения

Реактивный принцип движения изначально был подсказан самой природой. Его действием пользуются личинки некоторых видов стрекоз, медузы, многие моллюски — морские гребешки, каракатицы, осьминоги, кальмары. Они применяют своеобразный «принцип отталкивания». Каракатицы втягивают воду и выбрасывают ее так стремительно, что сами при этом делают рывок вперед. Кальмары, используя этот способ, могут достигать скорости до 70 километров в час. Именно поэтому такой способ передвижения позволил назвать кальмаров «биоло-гическими ракетами». Инженеры уже изобрели двигатель, работающий по принципу движений кальмара. Одним из примеров применения реактивного движения в природе и технике является водомет.

Это устройство, которое обеспечивает движение с помощью силы воды, выбрасываемой под сильным напором. В устройство вода закачивается в камеру, а затем выпускается из нее через сопло, а судно движется в обратном выбросу струи направлении. Вода затягивается с помощью двигателя, работающего на дизеле или бензине.

Примеры реактивного движения предлагает нам и мир растений. Среди них попадаются виды, которые используют такое движение для распространения семян, например, бешеный огурец. Только внешне это растение подобно привычным для нас огурцам. А характеристику «бешеный» оно получило из-за странного способа размножения. Дозревая, плоды отскакивают от плодоножек. В итоге открывается отверстие, через которое огурец стреляет веществом, содержащим подходящие для прорастания семена, применяя реактивность. А сам огурец при этом отскакивает до двенадцати метров в сторону, обратную выстрелу.

Проявление в природе и технике реактивного движения подвластно одним и тем же законам мироздания. Человечество все больше использует эти законы для достижения своих целей не только в атмосфере Земли, но и на просторах космоса, и реактивное движение является этому ярким примером.

Реактивное движение — движение, возникающее при отделении от тела с некоторой скоростью какой-либо его части.

Реактивная сила возникает без какого-либо взаимодействия с внешними телами.

Применение реактивного движения в природе

Многие из нас в своей жизни встречались во время купания в море с медузами. Во всяком случае, в Черном море их вполне хватает. Но мало кто за

думывался, что и медузы для передвижения пользуются реактивным движением. Кроме того, именно так передвигаются и личинки стрекоз, и некоторые виды морского планктона. И зачастую КПД морских беспозвоночных животных при использовании реактивного движения гораздо выше, чем у техноизобретений.

Реактивное движение используется многими моллюсками – осьминогами, кальмарами, каракатицами. Например, морской моллюск-гребешок движется вперед за счет реактивной силы струи воды, выброшенной из раковины при резком сжатии ее створок.

Осьминог

Каракатица

Каракатица, как и большинство головоногих моллюсков, движется в воде следующим способом. Она забирает воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывает струю воды через воронку. Каракатица направляет трубку воронки в бок или назад и стремительно выдавливая из неё воду, может двигаться в разные стороны. AAAAAAAAAAAAAAAAAAAAAAAAAAA

Сальпа — морское животное с прозрачным телом, при движении принимает воду через переднее отверстие, причем вода попадает в широкую полость, внутри которой по диагонали натянуты жабры. Как только животное сделает большой глоток воды, отверстие закрывается. Тогда продольные и поперечные мускулы сальпы сокращаются, все тело сжимается, и вода через заднее отверстие выталкивается наружу. Реакция вытекающей струи толкает сальпу вперед.

Наибольший интерес представляет реактивный двигатель кальмара. Кальмар является самым крупным беспозвоночным обитателем океанских глубин. Кальмары достигли высшего совершенства в реактивной навигации. У них даже тело своими внешними формами копирует ракету (или лучше сказать – ракета копирует кальмара, поскольку ему принадлежит в этом деле бесспорный приоритет). При медленном перемещении кальмар пользуется большим ромбовидным плавником, периодически изгибающимся. Для быстрого броска он использует реактивный двигатель. Мышечная ткань – мантия окружает тело моллюска со всех сторон, объем ее полости составляет почти половину объема тела кальмара. Животное засасывает воду внутрь мантийной полости, а затем резко выбрасывает струю воды через узкое сопло и с большой скоростью двигается толчками назад. При этом все десять щупалец кальмара собираются в узел над головой, и он приобретает обтекаемую форму. Сопло снабжено специальным клапаном, и мышцы могут его поворачивать, изменяя направление движения. Двигатель кальмара очень экономичен, он способен развивать скорость до 60 – 70 км/ч. (Некоторые исследователи считают, что даже до 150 км/ч!) Недаром кальмара называют “живой торпедой”. Изгибая сложенные пучком щупальца вправо, влево, вверх или вниз, кальмар поворачивает в ту или другую сторону. Поскольку такой руль по сравнению с самим животным имеет очень большие размеры, то достаточно его незначительного движения, чтобы кальмар, даже на полном ходу, легко мог увернуться от столкновения с препятствием. Резкий поворот руля – и пловец мчится уже в обратную сторону. Вот изогнул он конец воронки назад и скользит теперь головой вперед. Выгнул ее вправо – и реактивный толчок отбросил его влево. Но когда нужно плыть быстро, воронка всегда торчит прямо между щупальцами, и кальмар мчится хвостом вперед, как бежал бы рак – скороход, наделенный резвостью скакуна.

Если спешить не нужно, кальмары и каракатицы плавают, ундулируя плавниками, – миниатюрные волны пробегают по ним спереди назад, и животное грациозно скользит, изредка подталкивая себя также и струей воды, выброшенной из-под мантии. Тогда хорошо заметны отдельные толчки, которые получает моллюск в момент извержения водяных струй. Некоторые головоногие могут развивать скорость до пятидесяти пяти километров в час. Прямых измерений, кажется, никто не производил, но об этом можно судить по скорости и дальности полета летающих кальмаров. И такие, оказывается, есть таланты в родне у спрутов! Лучший пилот среди моллюсков – кальмар стенотевтис. Английские моряки называют его – флайинг-сквид («летающий кальмар»). Это небольшое животное размером с селедку. Он преследует рыб с такой стремительностью, что нередко выскакивает из воды, стрелой проносясь над ее поверхностью. К этой уловке он прибегает и спасая свою жизнь от хищников – тунцов и макрелей. Развив в воде максимальную реактивную тягу, кальмар-пилот стартует в воздух и пролетает над волнами более пятидесяти метров. Апогей полета живой ракеты лежит так высоко над водой, что летающие кальмары нередко попадают на палубы океанских судов. Четыре-пять метров – не рекордная высота, на которую поднимаются в небо кальмары. Иногда они взлетают еще выше.

Английский исследователь моллюсков доктор Рис описал в научной статье кальмара (длиной всего в 16 сантиметров), который, пролетев по воздуху изрядное расстояние, упал на мостик яхты, возвышавшийся над водой почти на семь метров.

Случается, что на корабль сверкающим каскадом обрушивается множество летающих кальмаров. Античный писатель Требиус Нигер поведал однажды печальную историю о корабле, который будто бы даже затонул под тяжестью летающих кальмаров, упавших на его палубу. Кальмары могут взлетать и без разгона.

Осьминоги тоже умеют летать. Французский натуралист Жан Верани видел, как обычный осьминог разогнался в аквариуме и вдруг задом вперед неожиданно выскочил из воды. Описав в воздухе дугу длиной метров в пять, он плюхнулся обратно в аквариум. Набирая скорость для прыжка, осьминог двигался не только за счет реактивной тяги, но и греб щупальцами. Мешковатые осьминоги плавают, конечно, хуже кальмаров, но в критические минуты и они могут показать рекордный для лучших спринтеров класс. Сотрудники Калифорнийского аквариума пытались сфотографировать осьминога, атакующего краба. Спрут бросался на добычу с такой быстротой, что на пленке, даже при съемке на самых больших скоростях, всегда оказывались смазки. Значит, бросок длился сотые доли секунды! Обычно же осьминоги плавают сравнительно медленно. Джозеф Сайнл, изучавший миграции спрутов, подсчитал: осьминог размером в полметра плывет по морю со средней скоростью около пятнадцати километров в час. Каждая струя воды, выброшенная из воронки, толкает его вперед (вернее, назад, так как осьминог плывет задом наперед) на два – два с половиной метра.

Реактивное движение можно встретить и в мире растений. Например, созревшие плоды “бешеного огурца” при самом легком прикосновении отскакивают от плодоножки, а из образовавшегося отверстия с силой выбрасывается клейкая жидкость с семенами. Сам огурец при этом отлетает в противоположном направлении до 12 м.

Большое значение закон сохранения импульса имеет при рассмотрении реактивного движения.
Под реактивным движением понимают движение тела, возникающее при отделении некоторой его части с определенной скоростью относительно него, например при истечении продуктов сгорания из сопла реактивного летательного аппарата. При этом появляется так называемая реактивная сила , толкающая тело.
Особенность реактивной силы заключается в том, что она возникает в результате взаимодействия между собой частей самой системы без какого-либо взаимодействия с внешними телами.
В то время, как сила, сообщающая ускорение, например, пешеходу, кораблю или самолету, возникает только за счет взаимодействия этих тел с землей, водой или воздухом.

Так движение тела можно получить в результате вытекания струи жидкости или газа.

В природе реактивное движение присуще в основном живым организмам, обитающим в водной среде.


В технике реактивное движение используется на речном транспорте (водометные двигатели), в автомобилестроении (гоночные автомобили), в военном деле, в авиации и космонавтике.
Все современные скоростные самолеты оснащены реактивными двигателями, т.к. они способны обеспечить необходимую скорость полета.
В космическом пространстве использовать другие двигатели, кроме реактивных, невозможно, так как там нет опоры, отталкиваясь от которой можно было бы бы получать ускорение.

История развития реактивной техники

Создателем русской боевой ракеты был ученый-артиллерист К.И. Константинов. При весе в 80 кг далььность полета ракеты Константинова достигала 4 км.


Идея применения реактивного движения в летательном аппарате, проект реактивного воздухоплавательного прибора, в 1881 году была выдвинута Н.И. Кибальчичем.


В 1903 году знаменитый ученый-физик К.Э. Циолковский доказал возможность полета в межпланетном пространстве и разработал проект первого ракетоплана с жидкостно-реактивным двигателем.


К.Э. Циолковский спроектировал космический ракетный поезд, составленный из ряда ракет, работающих поочередно и отпадающих по мере израсходования горючего.


Принципы применения реактивных двигателей

Основой любого реактивного двигателя является камера сгорания, в которой при сгорании топлива образуются газы, имеющие очень высокую температуру и оказывающие давление на стенки камеры. Газы вырываются из узкого сопла ракеты с большой скоростью и создают реактивную тягу. В соответствии с законом сохранения импульса, ракета приобретает скорость в противоположном направлении.

Импульс системы (ракета-продукты сгорания) остается равным нулю. Так как масса ракеты уменьшается, то даже при постоянной скорости истечения газов ее скорость будет увеличиваться, постепенно достигая максимального значения.
Движение ракеты — это пример движения тела с переменной массой. Для расчета ее скорости используют закон сохранения импульса.


Реактивные двигатели делятся на ракетные двигатели и воздушно-реактивные двигатели.

Ракетные двигатели бывают на твердом или на жидком топливе.
В ракетных двигателях на твердом топливе топливо, содержащее и горючее, и окислитель, помешают внутрь камеры сгорания двигателя.
В жидкостно-реактивных двигателях , предназначенных для запуска космических кораблей, горючее и окислитель хранятся отдельно в специальных баках и с помощью насосов подаются в камеру сгорания. В качестве горючего в них можно использовать керосин, бензин, спирт, жидкий водород и др., а в качестве окислителя, необходимого для горения, — жидкий кислород, азотную кислоту, и др.


Современные трехступенчатые космические ракеты запускаются вертикально, а после прохода плотных слоев атмосферы переводятся на полет в заданном направлении. Каждая ступень ракеты имеет свой бак с горючим и бак с окислителем, а также свой реактивный двигатель. По мере сгорания топлива отработанные ступени ракеты отбрасываются.


Воздушно-реактивные двигатели в настоящее время применяют главным образом в самолетах. Основное их отличие от ракетных двигателей состоит в том, что окислителем для горения топлива служит кислород воздуха, поступающего внутрь двигателя из атмосферы.
К воздушно-реактивным двигателям относятся турбокомпрессорные двигатели как с осевым, так и с центробежным компрессором.
Воздух в таких двигателях всасывается и сжимается компрессором, приводимым в движение газовой турбиной. Газы, выходящие из камеры сгорания, создают реактивную силу тяги и вращают ротор турбины.


При очень болььших скоростях полета сжатие газов в камере сгорания можно осуществить за счет встречного набегающего воздушного потока. Необходимость в компрессоре отпадает.

Применение реактивного движения в природе Многие из нас в своей жизни встречались во время купания в море с медузами. Но мало кто задумывался, что и медузы для передвижения пользуются реактивным движением. И зачастую КПД морских беспозвоночных животных при использовании реактивного движения гораздо выше, чем у техно изобретений.


Каракатица Каракатица, как и большинство головоногих моллюсков, движется в воде следующим способом. Она забирает воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывает струю воды через воронку. Каракатица направляет трубку воронки в бок или назад и стремительно выдавливая из неё воду, может двигаться в разные стороны.


Кальмар Кальмар является самым крупным беспозвоночным обитателем океанских глубин. Он передвигается по принципу реактивного движения, вбирая в себя воду, а затем с огромной силой проталкивая ее через особое отверстие — «воронку», и с большой скоростью (около 70 км\час) двигается толчками назад. При этом все десять щупалец кальмара собираются в узел над головой и он приобретает обтекаемую форму.

Летающий кальмар Это небольшое животное размером с селедку. Он преследует рыб с такой стремительностью, что нередко выскакивает из воды, стрелой проносясь над ее поверхностью. Развив в воде максимальную реактивную тягу, кальмар-пилот стартует в воздух и пролетает над волнами более пятидесяти метров. Апогей полета живой ракеты лежит так высоко над водой, что летающие кальмары нередко попадают на палубы океанских судов. Четыре-пять метров – не рекордная высота, на которую поднимаются в небо кальмары. Иногда они взлетают еще выше.

Осьминог Осьминоги тоже умеют летать. Французский натуралист Жан Верани видел, как обычный осьминог разогнался в аквариуме и вдруг задом вперед неожиданно выскочил из воды. Описав в воздухе дугу длиной метров в пять, он плюхнулся обратно в аквариум. Набирая скорость для прыжка, осьминог двигался не только за счет реактивной тяги, но и греб щупальцами.

Бешеный огурец В южных странах (и у нас на побережье Черного моря тоже) произрастает растение под названием «бешеный огурец». Стоит только слегка прикоснуться к созревшему плоду, похожему на огурец, как он отскакивает от плодоножки, а через образовавшееся отверстие из плода со скоростью до 10 м/с вылетает жидкость с семенами. Стреляет бешеный огурец (иначе его называют «дамский пистолет») более чем на 12 м.


Логика природы есть самая доступная и самая полезная логика для детей.

Константин Дмитриевич Ушинский (03.03.1823–03.01.1871) – русский педагог, основоположник научной педагогики в России.

Предлагаю читателям зелёных страничек заглянуть в увлекательный мир биофизики и познакомиться с основными принципами реактивного движения в живой природе . Сегодня в программе: медуза корнерот – самая крупная медуза Чёрного моря, морские гребешки , предприимчивая личинка стрекозы-коромысла , восхитительный кальмар с его непревзойдённым реактивным двигателем и замечательные иллюстрации в исполнении советского биолога и художника-анималиста Кондакова Николая Николаевича.

По принципу реактивного движения в живой природе передвигается целый ряд животных, например медузы, морские моллюски гребешки, личинки стрекозы-коромысла, кальмары, осьминоги, каракатицы… Познакомимся с некоторыми из них поближе;-)

Реактивный способ движения медуз

Медузы – одни из самых древних и многочисленных хищников на нашей планете! Тело медузы на 98% состоит из воды и в значительной части составлено из обводнённой соединительной ткани – мезоглеи , функционирующей как скелет. Основу мезоглеи составляет белок коллаген. Студенистое и прозрачное тело медузы по форме напоминает колокол или зонтик (в диаметре от нескольких миллиметров до 2,5 м ). Большинство медуз двигаются реактивным способом , выталкивая воду из полости зонтика.

Медузы Корнероты (Rhizostomae), отряд кишечнополостных животных класса сцифоидных. Медузы (до 65 см в диаметре) лишены краевых щупалец. Края рта вытянуты в ротовые лопасти с многочисленными складками, срастающимися между собой с образованием множества вторичных ротовых отверстий. Прикосновение к ротовым лопастям может вызвать болезненные ожоги , обусловленные действием стрекательных клеток. Около 80 видов; обитают преимущественно в тропических, реже в умеренных морях. В России – 2 вида : Rhizostoma pulmo обычен в Чёрном и Азовском морях, Rhopilema asamushi встречается в Японском море.

Реактивное бегство морских моллюсков гребешков

Морские моллюски гребешки , обычно спокойно лежащие на дне, при приближении к ним их главного врага – восхитительно медлительной, но чрезвычайно коварной хищницы – морской звезды – резко сжимают створки своей раковины, с силой выталкивая из неё воду. Используя, таким образом, принцип реактивного движения , они всплывают и, продолжая открывать и захлопывать раковину, могут отплывать на значительное расстояние. Если же гребешок по какой-то причине не успевает спастись своим реактивным бегством , морская звезда обхватывает его своими руками, вскрывает раковину и поедает…

Морской Гребешок (Pecten), род морских беспозвоночных животных класса двустворчатых моллюсков (Bivalvia). Раковина гребешка округлая с прямым замочным краем. Поверхность её покрыта расходящимися от вершины радиальными ребрами. Створки раковины смыкаются одним сильным мускулом. В Чёрном море обитают Pecten maximus, Flexopecten glaber; в Японском и Охотском морях – Mizuhopecten yessoensis (до 17 см в диаметре).

Реактивный насос личинки стрекозы-коромысла

Нрав у личинки стрекозы-коромысла , или эшны (Aeshna sp.) не менее хищный, чем у её крылатых сородичей. Два, а иногда и четыре года живёт она в подводном царстве, ползает по каменистому дну, выслеживая мелких водных обитателей, с удовольствием включая в свой рацион довольно-таки крупнокалиберных головастиков и мальков. В минуты опасности личинка стрекозы-коромысла срывается с места и рывками плывёт вперёд, движимая работой замечательного реактивного насоса . Набирая воду в заднюю кишку, а затем резко выбрасывая её, личинка прыгает вперёд, подгоняемая силой отдачи. Используя, таким образом, принцип реактивного движения , личинка стрекозы-коромысла уверенными толчками-рывками скрывается от преследующей её угрозы.

Реактивные импульсы нервной «автострады» кальмаров

Во всех, приведённых выше случаях (принципах реактивного движения медуз, гребешков, личинок стрекозы-коромысла), толчки и рывки отделены друг от друга значительными промежутками времени, следовательно большая скорость движения не достигается. Чтобы увеличилась скорость движения, иначе говоря, число реактивных импульсов в единицу времени , необходима повышенная проводимость нервов , которые возбуждают сокращение мышц, обслуживающих живой реактивный двигатель . Такая большая проводимость возможна при большом диаметре нерва.

Известно, что у кальмаров самые крупные в животном мире нервные волокна . В среднем они достигают в диаметре 1 мм – в 50 раз больше, чем у большинства млекопитающих – и проводят возбуждение они со скоростью 25 м/с . А у трёхметрового кальмара дозидикуса (он обитает у берегов Чили) толщина нервов фантастически велика – 18 мм . Нервы толстые, как верёвки! Сигналы мозга – возбудители сокращений – мчатся по нервной «автостраде» кальмара со скоростью легкового автомобиля – 90 км/ч .

Благодаря кальмарам, исследования жизнедеятельности нервов ещё в начале 20 века стремительно продвинулись вперёд. «И кто знает , – пишет британский натуралист Фрэнк Лейн, – может быть, есть сейчас люди, обязанные кальмару тем, что их нервная система находится в нормальном состоянии…»

Быстроходность и манёвренность кальмара объясняется также прекрасными гидродинамическими формами тела животного, за что кальмара и прозвали «живой торпедой» .

Кальмары (Teuthoidea), подотряд головоногих моллюсков отряда десятиногих. Размером обычно 0,25-0,5 м, но некоторые виды являются самыми крупными беспозвоночными животными (кальмары рода Architeuthis достигают 18 м , включая длину щупалец).
Тело у кальмаров удлинённое, заострённое сзади, торпедообразное, что определяет большую скорость их движения как в воде (до 70 км/ч ), так и в воздухе (кальмары могут выскакивать из воды на высоту до 7 м ).

Реактивный двигатель кальмара

Реактивное движение , используемое ныне в торпедах, самолётах, ракетах и космических снарядах, свойственно также головоногим моллюскам – осьминогам, каракатицам, кальмарам . Наибольший интерес для техников и биофизиков представляет реактивный двигатель кальмаров . Обратите внимание, как просто, с какой минимальной затратой материала решила природа эту сложную и до сих пор непревзойдённую задачу;-)

В сущности, кальмар располагает двумя принципиально различными двигателями (рис. 1а ). При медленном перемещении он пользуется большим ромбовидным плавником, периодически изгибающимся в виде бегущей волны вдоль корпуса тела. Для быстрого броска кальмар использует реактивный двигатель . Основой этого двигателя является мантия – мышечная ткань. Она окружает тело моллюска со всех сторон, составляя почти половину объёма его тела, и образует своеобразный резервуар – мантийную полость – «камеру сгорания» живой ракеты , в которую периодически засасывается вода. В мантийной полости находятся жабры и внутренние органы кальмара (рис. 1б ).

При реактивном способе плавания животное производит засасывание воды через широко открытую мантийную щель внутрь мантийной полости из пограничного слоя. Мантийная щель плотно «застёгивается» на специальные «запонки-кнопки» после того как «камера сгорания» живого двигателя наполнится забортной водой. Расположена мантийная щель вблизи середины тела кальмара, где оно имеет наибольшую толщину. Сила, вызывающая движение животного, создаётся за счёт выбрасывания струи воды через узкую воронку, которая расположена на брюшной поверхности кальмара. Эта воронка, или сифон, – «сопло» живого реактивного двигателя .

«Сопло» двигателя снабжено специальным клапаном и мышцы могут его поворачивать. Изменяя угол установки воронки-сопла (рис. 1в ), кальмар плывёт одинаково хорошо, как вперёд, так и назад (если он плывет назад, – воронка вытягивается вдоль тела, а клапан прижат к её стенке и не мешает вытекающей из мантийной полости водяной струе; когда кальмару нужно двигаться вперёд, свободный конец воронки несколько удлиняется и изгибается в вертикальной плоскости, её выходное отверстие сворачивается и клапан принимает изогнутое положение). Реактивные толчки и всасывание воды в мантийную полость с неуловимой быстротой следуют одно за другим, и кальмар ракетой проносится в синеве океана.

Кальмар и его реактивный двигатель – рисунок 1

1а) кальмар – живая торпеда; 1б) реактивный двигатель кальмара; 1в) положение сопла и его клапана при движении кальмара назад и вперёд.

На забор воды и её выталкивание животное затрачивает доли секунды. Засасывая воду в мантийную полость в кормовой части тела в периоды замедленных движений по инерции, кальмар тем самым осуществляет отсос пограничного слоя, предотвращая таким образом срыв потока при нестационарном режиме обтекания. Увеличивая порции выбрасываемой воды и учащая сокращения мантии, кальмар легко увеличивает скорость движения.

Реактивный двигатель кальмара очень экономичен , благодаря чему он может достигать скорости 70 км/ч ; некоторые исследователи считают, что даже 150 км/ч !

Инженеры уже создали двигатель, подобный реактивному двигателю кальмара : это водомёт , действующий при помощи обычного бензинового или дизельного двигателя. Почему же реактивный двигатель кальмара по-прежнему привлекает внимание инженеров и является объектом тщательных исследований биофизиков? Для работы под водой удобно иметь устройство, работающее без доступа атмосферного воздуха. Творческие поиски инженеров направлены на создание конструкции гидрореактивного двигателя , подобного воздушно-реактивному

По материалам замечательных книг:
«Биофизика на уроках физики» Цецилии Бунимовны Кац ,
и «Приматы моря» Игоря Ивановича Акимушкина

Кондаков Николай Николаевич (1908–1999) – советский биолог, художник-анималист , кандидат биологических наук. Основным вкладом в биологическую науку стали выполненные им рисунки различных представителей фауны. Эти иллюстрации вошли во многие издания, такие как Большая Советская Энциклопедия, Красная книга СССР , в атласы животных и в учебные пособия.

Акимушкин Игорь Иванович (01.05.1929–01.01.1993) – советский биолог, писатель – популяризатор биологии , автор научно-популярных книг о жизни животных. Лауреат премии Всесоюзного общества «Знание». Член Союза писателей СССР. Наиболее известной публикацией Игоря Акимушкина является шеститомная книга «Мир Животных» .

Материалы этой статьи полезно будет применить не только на уроках физики и биологии , но и во внеклассной работе.
Биофизический материал является чрезвычайно благодатным для мобилизации внимания учащихся, для превращения абстрактных формулировок в нечто конкретное и близкое, затрагивающее не только интеллектуальную, но и эмоциональную сферу.

Литература:
§ Кац Ц.Б. Биофизика на уроках физики

§ § Акимушкин И.И. Приматы моря
Москва: издательство «Мысль», 1974
§ Тарасов Л.В. Физика в природе
Москва: издательство «Просвещение», 1988

Физика. Реактивное движение в природе и в технике. Передвигаются каракатицы не так быстро, как их родственники кальмары Скорость каракатицы

Передвигаются каракатицы не так быстро, как их родственники кальмары, хотя и имеют на вооружении реактивную воронку. Обычно они плавают при помощи плавников, но могут использовать и реактивный способ передвижения. Плавники могут действовать раздельно, что дает каракатице удивительную маневренность при движении — она может двигаться даже боком. Если же каракатица передвигается только реактивным способом, то плавники она прижимает к брюху. Часто каракатицы собираются в небольшие стайки, двигаясь ритмично и согласованно, при этом одновременно меняя окраску тела. Зрелище очень завораживающее.

Слайд 15 из презентации «Головоногие моллюски» . Размер архива с презентацией 719 КБ.

Биология 7 класс

краткое содержание других презентаций

«Факты о птицах» — Нервная система. Пищеварительная система. Яйца птиц. Класс Птицы. Внешнее строение. Интересные факты. Немного о птицах. Эволюция птиц. Разнообразие птиц. Половая система. Значение птиц в природе. Птицы в жизни человека. Кровеносная система. Выделительная система.

«Особенности размножения покрытосеменных растений» — Способ бесполого размножения. Способы опыления. Камбий в стебле древесного растения. Двойное оплодотворение у покрытосеменных растений. Семя. Тест. Строение цветка. Два спермия. Оплодотворение. Какой способ бесполого размножения изображен на рисунке. Признак покрытосеменных растений. Семя пшеницы. Особенности полового и бесполого размножения. Вставьте пропущенные слова. Размножение покрытосеменных.

«Описание моллюсков» — Фронтальный мини-тест по теме «Черви». Ископаемые остатки моллюсков. Лужанка. Типы животных. Органы выделения. Разнообразие моллюсков. У некоторых видов раковины нет. Спрут. Кальмар. Объясните ошибки из высказывания. Моллюски села Шуйское. Характерные признаки моллюсков. Классификация моллюсков. Движение головоногих. Внешнее строение моллюсков. Брюхоногие. Разнообразие раковин. Внутреннее строение моллюсков.

«Пчёлы» — Ячейки разделяются по строению. Роль пчелы. Гнездо пчелиной семьи. Цветочная пыльца. Лечение пчелиным ядом. Грудь. Мед. Тело взрослой пчелы. Роение. Пара больших боковых сложных глаз. Пчелиная матка. Ротовой аппарат. Пчелиный яд. Пчела — символ трудолюбия. Органы дыхания. Мед есть сок с росы небесной. Пчёлы.

«Пищевые трофические связи» — Трофические отношения в природе. Выберите консументов. Типы биотических отношений. Типы взаимотношений. Тип биотических отношений. Консументы. Бурая водоросль. Нектар цветов. Значение. Урок экологии. Продуценты. Трофические цепи. Давайте жить дружно. Компоненты экосистемы. Клевер. Пищевая цепь. Веселый тест. Редуценты. Таблица. Правило. Необходимые компоненты экосистемы. Детритные пищевые цепи. Пары организмов.

«Органы дыхания» — Основной орган дыхания в водной среде. Паукообразные. Жабры. Пресмыкающиеся. Дыхательная система земноводных. Трахеи. Дыхательная система млекопитающих. Жаберные щели. Найдите ошибки в тексте. Птицы. Органы дыхания и газообмен. Пластинчатые перистые жабры. По дыханию все живое делится на две группы. Эволюция дыхательной системы. Ракообразные. Растения, грибы и примитивные животные. Функции дыхательной системы.

Логика природы есть самая доступная и самая полезная логика для детей.

Константин Дмитриевич Ушинский (03.03.1823–03.01.1871) – русский педагог, основоположник научной педагогики в России.

Предлагаю читателям зелёных страничек заглянуть в увлекательный мир биофизики и познакомиться с основными принципами реактивного движения в живой природе . Сегодня в программе: медуза корнерот – самая крупная медуза Чёрного моря, морские гребешки , предприимчивая личинка стрекозы-коромысла , восхитительный кальмар с его непревзойдённым реактивным двигателем и замечательные иллюстрации в исполнении советского биолога и художника-анималиста Кондакова Николая Николаевича.

По принципу реактивного движения в живой природе передвигается целый ряд животных, например медузы, морские моллюски гребешки, личинки стрекозы-коромысла, кальмары, осьминоги, каракатицы… Познакомимся с некоторыми из них поближе;-)

Реактивный способ движения медуз

Медузы – одни из самых древних и многочисленных хищников на нашей планете! Тело медузы на 98% состоит из воды и в значительной части составлено из обводнённой соединительной ткани – мезоглеи , функционирующей как скелет. Основу мезоглеи составляет белок коллаген. Студенистое и прозрачное тело медузы по форме напоминает колокол или зонтик (в диаметре от нескольких миллиметров до 2,5 м ). Большинство медуз двигаются реактивным способом , выталкивая воду из полости зонтика.

Медузы Корнероты (Rhizostomae), отряд кишечнополостных животных класса сцифоидных. Медузы (до 65 см в диаметре) лишены краевых щупалец. Края рта вытянуты в ротовые лопасти с многочисленными складками, срастающимися между собой с образованием множества вторичных ротовых отверстий. Прикосновение к ротовым лопастям может вызвать болезненные ожоги , обусловленные действием стрекательных клеток. Около 80 видов; обитают преимущественно в тропических, реже в умеренных морях. В России – 2 вида : Rhizostoma pulmo обычен в Чёрном и Азовском морях, Rhopilema asamushi встречается в Японском море.

Реактивное бегство морских моллюсков гребешков

Морские моллюски гребешки , обычно спокойно лежащие на дне, при приближении к ним их главного врага – восхитительно медлительной, но чрезвычайно коварной хищницы – морской звезды – резко сжимают створки своей раковины, с силой выталкивая из неё воду. Используя, таким образом, принцип реактивного движения , они всплывают и, продолжая открывать и захлопывать раковину, могут отплывать на значительное расстояние. Если же гребешок по какой-то причине не успевает спастись своим реактивным бегством , морская звезда обхватывает его своими руками, вскрывает раковину и поедает…

Морской Гребешок (Pecten), род морских беспозвоночных животных класса двустворчатых моллюсков (Bivalvia). Раковина гребешка округлая с прямым замочным краем. Поверхность её покрыта расходящимися от вершины радиальными ребрами. Створки раковины смыкаются одним сильным мускулом. В Чёрном море обитают Pecten maximus, Flexopecten glaber; в Японском и Охотском морях – Mizuhopecten yessoensis (до 17 см в диаметре).

Реактивный насос личинки стрекозы-коромысла

Нрав у личинки стрекозы-коромысла , или эшны (Aeshna sp.) не менее хищный, чем у её крылатых сородичей. Два, а иногда и четыре года живёт она в подводном царстве, ползает по каменистому дну, выслеживая мелких водных обитателей, с удовольствием включая в свой рацион довольно-таки крупнокалиберных головастиков и мальков. В минуты опасности личинка стрекозы-коромысла срывается с места и рывками плывёт вперёд, движимая работой замечательного реактивного насоса . Набирая воду в заднюю кишку, а затем резко выбрасывая её, личинка прыгает вперёд, подгоняемая силой отдачи. Используя, таким образом, принцип реактивного движения , личинка стрекозы-коромысла уверенными толчками-рывками скрывается от преследующей её угрозы.

Реактивные импульсы нервной «автострады» кальмаров

Во всех, приведённых выше случаях (принципах реактивного движения медуз, гребешков, личинок стрекозы-коромысла), толчки и рывки отделены друг от друга значительными промежутками времени, следовательно большая скорость движения не достигается. Чтобы увеличилась скорость движения, иначе говоря, число реактивных импульсов в единицу времени , необходима повышенная проводимость нервов , которые возбуждают сокращение мышц, обслуживающих живой реактивный двигатель . Такая большая проводимость возможна при большом диаметре нерва.

Известно, что у кальмаров самые крупные в животном мире нервные волокна . В среднем они достигают в диаметре 1 мм – в 50 раз больше, чем у большинства млекопитающих – и проводят возбуждение они со скоростью 25 м/с . А у трёхметрового кальмара дозидикуса (он обитает у берегов Чили) толщина нервов фантастически велика – 18 мм . Нервы толстые, как верёвки! Сигналы мозга – возбудители сокращений – мчатся по нервной «автостраде» кальмара со скоростью легкового автомобиля – 90 км/ч .

Благодаря кальмарам, исследования жизнедеятельности нервов ещё в начале 20 века стремительно продвинулись вперёд. «И кто знает , – пишет британский натуралист Фрэнк Лейн, – может быть, есть сейчас люди, обязанные кальмару тем, что их нервная система находится в нормальном состоянии…»

Быстроходность и манёвренность кальмара объясняется также прекрасными гидродинамическими формами тела животного, за что кальмара и прозвали «живой торпедой» .

Кальмары (Teuthoidea), подотряд головоногих моллюсков отряда десятиногих. Размером обычно 0,25-0,5 м, но некоторые виды являются самыми крупными беспозвоночными животными (кальмары рода Architeuthis достигают 18 м , включая длину щупалец).
Тело у кальмаров удлинённое, заострённое сзади, торпедообразное, что определяет большую скорость их движения как в воде (до 70 км/ч ), так и в воздухе (кальмары могут выскакивать из воды на высоту до 7 м ).

Реактивный двигатель кальмара

Реактивное движение , используемое ныне в торпедах, самолётах, ракетах и космических снарядах, свойственно также головоногим моллюскам – осьминогам, каракатицам, кальмарам . Наибольший интерес для техников и биофизиков представляет реактивный двигатель кальмаров . Обратите внимание, как просто, с какой минимальной затратой материала решила природа эту сложную и до сих пор непревзойдённую задачу;-)

В сущности, кальмар располагает двумя принципиально различными двигателями (рис. 1а ). При медленном перемещении он пользуется большим ромбовидным плавником, периодически изгибающимся в виде бегущей волны вдоль корпуса тела. Для быстрого броска кальмар использует реактивный двигатель . Основой этого двигателя является мантия – мышечная ткань. Она окружает тело моллюска со всех сторон, составляя почти половину объёма его тела, и образует своеобразный резервуар – мантийную полость – «камеру сгорания» живой ракеты , в которую периодически засасывается вода. В мантийной полости находятся жабры и внутренние органы кальмара (рис. 1б ).

При реактивном способе плавания животное производит засасывание воды через широко открытую мантийную щель внутрь мантийной полости из пограничного слоя. Мантийная щель плотно «застёгивается» на специальные «запонки-кнопки» после того как «камера сгорания» живого двигателя наполнится забортной водой. Расположена мантийная щель вблизи середины тела кальмара, где оно имеет наибольшую толщину. Сила, вызывающая движение животного, создаётся за счёт выбрасывания струи воды через узкую воронку, которая расположена на брюшной поверхности кальмара. Эта воронка, или сифон, – «сопло» живого реактивного двигателя .

«Сопло» двигателя снабжено специальным клапаном и мышцы могут его поворачивать. Изменяя угол установки воронки-сопла (рис. 1в ), кальмар плывёт одинаково хорошо, как вперёд, так и назад (если он плывет назад, – воронка вытягивается вдоль тела, а клапан прижат к её стенке и не мешает вытекающей из мантийной полости водяной струе; когда кальмару нужно двигаться вперёд, свободный конец воронки несколько удлиняется и изгибается в вертикальной плоскости, её выходное отверстие сворачивается и клапан принимает изогнутое положение). Реактивные толчки и всасывание воды в мантийную полость с неуловимой быстротой следуют одно за другим, и кальмар ракетой проносится в синеве океана.

Кальмар и его реактивный двигатель – рисунок 1

1а) кальмар – живая торпеда; 1б) реактивный двигатель кальмара; 1в) положение сопла и его клапана при движении кальмара назад и вперёд.

На забор воды и её выталкивание животное затрачивает доли секунды. Засасывая воду в мантийную полость в кормовой части тела в периоды замедленных движений по инерции, кальмар тем самым осуществляет отсос пограничного слоя, предотвращая таким образом срыв потока при нестационарном режиме обтекания. Увеличивая порции выбрасываемой воды и учащая сокращения мантии, кальмар легко увеличивает скорость движения.

Реактивный двигатель кальмара очень экономичен , благодаря чему он может достигать скорости 70 км/ч ; некоторые исследователи считают, что даже 150 км/ч !

Инженеры уже создали двигатель, подобный реактивному двигателю кальмара : это водомёт , действующий при помощи обычного бензинового или дизельного двигателя. Почему же реактивный двигатель кальмара по-прежнему привлекает внимание инженеров и является объектом тщательных исследований биофизиков? Для работы под водой удобно иметь устройство, работающее без доступа атмосферного воздуха. Творческие поиски инженеров направлены на создание конструкции гидрореактивного двигателя , подобного воздушно-реактивному

По материалам замечательных книг:
«Биофизика на уроках физики» Цецилии Бунимовны Кац ,
и «Приматы моря» Игоря Ивановича Акимушкина

Кондаков Николай Николаевич (1908–1999) – советский биолог, художник-анималист , кандидат биологических наук. Основным вкладом в биологическую науку стали выполненные им рисунки различных представителей фауны. Эти иллюстрации вошли во многие издания, такие как Большая Советская Энциклопедия, Красная книга СССР , в атласы животных и в учебные пособия.

Акимушкин Игорь Иванович (01.05.1929–01.01.1993) – советский биолог, писатель – популяризатор биологии , автор научно-популярных книг о жизни животных. Лауреат премии Всесоюзного общества «Знание». Член Союза писателей СССР. Наиболее известной публикацией Игоря Акимушкина является шеститомная книга «Мир Животных» .

Материалы этой статьи полезно будет применить не только на уроках физики и биологии , но и во внеклассной работе.
Биофизический материал является чрезвычайно благодатным для мобилизации внимания учащихся, для превращения абстрактных формулировок в нечто конкретное и близкое, затрагивающее не только интеллектуальную, но и эмоциональную сферу.

Литература:
§ Кац Ц.Б. Биофизика на уроках физики

§ § Акимушкин И.И. Приматы моря
Москва: издательство «Мысль», 1974
§ Тарасов Л.В. Физика в природе
Москва: издательство «Просвещение», 1988

Вам странно будет услышать, что есть не мало живых существ, для которых мнимое «поднятие самого себя за волосы» является обычным способом их перемещения в воде.

Рисунок 10. Плавательное движение каракатицы.

Каракатица и вообще большинство головоногих моллюсков движутся в воде таким образом: забирают воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывают струю воды через упомянутую воронку; при этом они – по закону противодействия – получают обратный толчок, достаточный для того, чтобы довольно быстро плавать задней стороной тела вперед. Каракатица может, впрочем, направить трубку воронки вбок или назад и, стремительно выдавливая из нее воду, двигаться в любом направлении.

На том же основано и движение медузы: сокращением мускулов она выталкивает из‑под своего колоколообразного тела воду, получая толчок в обратном направлении. Сходным приемом пользуются при движении сальпы, личинки стрекоз и другие водные животные. А мы еще сомневались, можно ли так двигаться!

К звездам на ракете

Что может быть заманчивее, чем покинуть земной шар и путешествовать по необъятной вселенной, перелетать с Земли на Луну, с планеты на планету? Сколько фантастических романов написано на эту тему! Кто только не увлекал нас в воображаемое путешествие по небесным светилам! Вольтер в «Микромегасе», Жюль Верн в «Путешествии на Луну» и «Гекторе Сервадаке», Уэллс в «Первых людях на Луне» и множество их подражателей совершали интереснейшие путешествия на небесные светила, – конечно, в мечтах.

Неужели же нет возможности осуществить эту давнишнюю мечту? Неужели все остроумные проекты, с таким заманчивым правдоподобием изображенные в романах, на самом деле неисполнимы? В дальнейшем мы будем еще беседовать о фантастических проектах межпланетных путешествий; теперь же познакомимся с реальным проектом подобных перелетов, впервые предложенным нашим соотечественником К. Э. Циолковским.

Можно ли долететь до Луны на самолете? Конечно, нет: самолеты и дирижабли движутся только потому, что опираются о воздух, отталкиваются от него, а между Землей и Луной воздуха нет. В мировом пространстве вообще нет достаточно плотной среды, на которую мог бы опереться «межпланетный дирижабль». Значит, надо придумать такой аппарат, который способен был бы двигаться и управляться, ни на что не опираясь.

Мы знакомы уже с подобным снарядом в виде игрушки – с ракетой. Отчего бы не устроить огромную ракету, с особым помещением для людей, съестных припасов, баллонов с воздухом и всем прочим? Вообразите, что люди в ракете везут с собой большой запас горючих веществ и могут направлять истечение взрывных газов в любую сторону. Вы получите настоящий управляемый небесный корабль, на котором можно плыть в океане мирового пространства, полететь на Луну, на планеты… Пассажиры смогут, управляя взрывами, увеличивать скорость этого межпланетного дирижабля с необходимой постепенностью, чтобы возрастание скорости было для них безвредно. При желании спуститься на какую‑нибудь планету они смогут, повернув свой корабль, постепенно уменьшить скорость снаряда и тем ослабить падение. Наконец, пассажиры смогут таким же способом возвратиться и на Землю.

Вам странно будет услышать, что есть не мало живых существ, для которых мнимое «поднятие самого себя за волосы» является обычным способом их перемещения в воде.

Рисунок 10. Плавательное движение каракатицы.

Каракатица и вообще большинство головоногих моллюсков движутся в воде таким образом: забирают воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывают струю воды через упомянутую воронку; при этом они – по закону противодействия – получают обратный толчок, достаточный для того, чтобы довольно быстро плавать задней стороной тела вперед. Каракатица может, впрочем, направить трубку воронки вбок или назад и, стремительно выдавливая из нее воду, двигаться в любом направлении.

На том же основано и движение медузы: сокращением мускулов она выталкивает из‑под своего колоколообразного тела воду, получая толчок в обратном направлении. Сходным приемом пользуются при движении сальпы, личинки стрекоз и другие водные животные. А мы еще сомневались, можно ли так двигаться!

К звездам на ракете

Что может быть заманчивее, чем покинуть земной шар и путешествовать по необъятной вселенной, перелетать с Земли на Луну, с планеты на планету? Сколько фантастических романов написано на эту тему! Кто только не увлекал нас в воображаемое путешествие по небесным светилам! Вольтер в «Микромегасе», Жюль Верн в «Путешествии на Луну» и «Гекторе Сервадаке», Уэллс в «Первых людях на Луне» и множество их подражателей совершали интереснейшие путешествия на небесные светила, – конечно, в мечтах.

Неужели же нет возможности осуществить эту давнишнюю мечту? Неужели все остроумные проекты, с таким заманчивым правдоподобием изображенные в романах, на самом деле неисполнимы? В дальнейшем мы будем еще беседовать о фантастических проектах межпланетных путешествий; теперь же познакомимся с реальным проектом подобных перелетов, впервые предложенным нашим соотечественником К. Э. Циолковским.

Можно ли долететь до Луны на самолете? Конечно, нет: самолеты и дирижабли движутся только потому, что опираются о воздух, отталкиваются от него, а между Землей и Луной воздуха нет. В мировом пространстве вообще нет достаточно плотной среды, на которую мог бы опереться «межпланетный дирижабль». Значит, надо придумать такой аппарат, который способен был бы двигаться и управляться, ни на что не опираясь.

Мы знакомы уже с подобным снарядом в виде игрушки – с ракетой. Отчего бы не устроить огромную ракету, с особым помещением для людей, съестных припасов, баллонов с воздухом и всем прочим? Вообразите, что люди в ракете везут с собой большой запас горючих веществ я могут направлять истечение взрывных газов в любую сторону. Вы получите настоящий управляемый небесный корабль, на котором можно плыть в океане мирового пространства, полететь на Луну, на планеты… Пассажиры смогут, управляя взрывами, увеличивать скорость этого межпланетного дирижабля с необходимой постепенностью, чтобы возрастание скорости было для них безвредно. При желании спуститься на какую‑нибудь планету они смогут, повернув свой корабль, постепенно уменьшить скорость снаряда и тем ослабить падение. Наконец, пассажиры смогут таким же способом возвратиться и на Землю.

Рисунок 11. Проект межпланетного дирижабля, устроенного наподобие ракеты.

Вспомним, как недавно еще делала свои первые робкие завоевания авиация. А сейчас – самолеты уже высоко реют в воздухе, перелетают горы, пустыни, материки, океаны. Может быть, и «звездоплаванию» предстоит такой же пышный расцвет через два‑три десятка лет? Тогда человек разорвет невидимые цепи, так долго приковывавшие его к родной планете, и ринется в безграничный простор вселенной.

Реактивное движение в природе и в технике — весьма распространенное явление. В природе оно возникает, когда одна часть тела отделяется с определенной скоростью от некоторой другой части. При этом реактивная сила появляется без взаимодействия данного организма с внешними телами.

Для того чтобы понять, о чем идет речь, лучше всего обратиться к примерам. в природе и технике многочисленны. Сначала мы поговорим о том, как его используют животные, а затем о том, как оно применяется в технике.

Медузы, личинки стрекоз, планктон и моллюски

Многие, купаясь в море, встречали медуз. В Черном море их, во всяком случае, хватает. Однако не все задумывались, что передвигаются медузы как раз с помощью реактивного движения. К этому же способу прибегают и личинки стрекоз, а также некоторые представители морского планктона. КПД беспозвоночных морских животных, которые используют его, зачастую намного выше, чем у технических изобретений.

Многие моллюски передвигаются интересующим нас способом. В качестве примера можно привести каракатиц, кальмаров, осьминогов. В частности, морской моллюск-гребешок способен двигаться вперед, используя реактивную струю воды, которая выбрасывается из раковины, когда ее створки резко сжимаются.

И это лишь несколько примеров из жизни животного мира, которые можно привести, раскрывая тему: «Реактивное движение в быту, природе и технике».

Как передвигается каракатица

Весьма интересна в этом отношении и каракатица. Подобно множеству головоногих моллюсков, она передвигается в воде, используя следующий механизм. Через особую воронку, находящуюся впереди тела, а также через боковую щель каракатица забирает воду в свою жаберную полость. Затем она ее энергично выбрасывает через воронку. Трубку воронки каракатица направляет назад или вбок. Движение при этом может осуществляться в разные стороны.

Способ, который использует сальпа

Любопытен и способ, который использует сальпа. Так называется морское животное, имеющее прозрачное тело. Сальпа при движении втягивает воду, используя для этого переднее отверстие. Вода оказывается в широкой полости, а внутри нее по диагонали расположены жабры. Отверстие закрывается тогда, когда сальпа делает большой глоток воды. Ее поперечные и продольные мускулы сокращаются, сжимается все тело животного. Сквозь заднее отверстие вода выталкивается наружу. Животное двигается вперед благодаря реакции вытекающей струи.

Кальмары — «живые торпеды»

Самый большой интерес представляет, пожалуй, реактивный двигатель, который есть у кальмара. Это животное считается наиболее крупным представителем беспозвоночных, обитающим на больших океанских глубинах. В реактивной навигации кальмары достигли настоящего совершенства. Даже тело этих животных напоминает ракету своими внешними формами. Вернее сказать, это ракета копирует кальмара, так как именно ему принадлежит бесспорное первенство в этом деле. Если нужно передвигаться медленно, животное использует для этого большой ромбовидный плавник, который время от времени изгибается. Если же необходим быстрый бросок, на помощь приходит реактивный двигатель.

Со всех сторон тело моллюска окружает мантия — мышечная ткань. Практически половина всего объема тела животного приходится на объем ее полости. Кальмар использует мантийную полость для движения, засасывая воду внутрь нее. Затем он резко выбрасывает набранную струю воды сквозь узкое сопло. В результате этого он двигается толчками назад с большой скоростью. При этом кальмар складывает все свои 10 щупалец в узел над головой для того, чтобы приобрести обтекаемую форму. В составе сопла есть особый клапан, и мышцы животного могут поворачивать его. Тем самым направление движения меняется.

Впечатляющая скорость движения кальмара

Нужно сказать, что двигатель кальмара весьма экономичен. Скорость, которую он способен развивать, может достигать 60-70 км/ч. Некоторые исследователи даже полагают, что она может доходить до 150 км/ч. Как вы видите, кальмар не зря зовется «живой торпедой». Он может поворачивать в нужную сторону, изгибая вниз, вверх, влево или вправо щупальца, сложенные пучком.

Как кальмар управляет движением

Так как по сравнению с размерами самого животного руль очень велик, для того чтобы кальмар мог легко избежать столкновения с препятствием, даже двигаясь с максимальной скоростью, достаточно лишь незначительного движения руля. Если его резко повернуть, животное тут же помчится в обратную сторону. Кальмар изгибает назад конец воронки и в результате этого может скользить уже головой вперед. Если он выгнет ее вправо, он будет отброшен влево реактивным толчком. Однако когда плыть необходимо быстро, воронка всегда находится прямо между щупальцами. Животное в этом случае мчится хвостом вперед, подобно бегу рака-скорохода, если бы он обладал резвостью скакуна.

В случае когда спешить не требуется, каракатицы и кальмары плавают, ундулируя при этом плавниками. Спереди назад пробегают по ним миниатюрные волны. Кальмары и каракатицы грациозно скользят. Они лишь время от времени подталкивают себя струей воды, которая выбрасывается из-под их мантии. Отдельные толчки, которые моллюск получает при извержении струй воды, в такие моменты хорошо заметны.

Летающий кальмар

Некоторые головоногие способны ускоряться до 55 км/ч. Кажется, никто не осуществлял прямых измерений, однако такую цифру мы можем назвать, основываясь на дальности и скорости полета летающих кальмаров. Оказывается, существуют и такие. Кальмар стенотевтис является лучшим пилотом из всех моллюсков. Английские моряки именуют его летающим кальмаром (флайинг-сквид). Это животное, фото которого представлено выше, имеет небольшие размеры, примерно с селедку. Он так стремительно преследует рыб, что часто выскакивает из воды, проносясь стрелой над ее поверхностью. Такую уловку он использует и в случае, когда ему угрожает опасность от хищников — макрелей и тунцов. Развив максимальную реактивную тягу в воде, кальмар стартует в воздух, а затем пролетает более 50 метров над волнами. При его полета находится так высоко, что часто летающие кальмары попадают на палубы судов. Высота 4-5 метров для них — отнюдь не рекорд. Иногда летающие кальмары взлетают даже выше.

Доктор Рис, исследователь моллюсков из Великобритании, в своей научной статье описал представителя этих животных, длина тела которого составляла всего 16 см. Однако при этом он смог пролететь изрядное расстояние по воздуху, после чего приземлился на мостик яхты. А высота этого мостика составляла практически 7 метров!

Бывают случаи, когда на корабль обрушивается сразу множество летающих кальмаров. Требиус Нигер, античный писатель, однажды рассказал печальную историю о судне, которое как будто бы не смогло выдержать тяжесть этих морских животных и затонуло. Интересно, что кальмары способны взлетать даже без разгона.

Летающие осьминоги

Способностью летать обладают также осьминоги. Жан Верани, французский натуралист, наблюдал, как один из них разогнался в своем аквариуме, а затем внезапно выскочил из воды. Животное описало в воздухе дугу примерно в 5 метров, а затем плюхнулось в аквариум. Осьминог, набирая необходимую для прыжка скорость, двигался не только благодаря реактивной тяге. Он также греб своими щупальцами. Осьминоги мешковаты, поэтому они плавают хуже кальмаров, однако в критические минуты и эти животные способны дать фору лучшим спринтерам. Работники Калифорнийского аквариума хотели сделать фото осьминога, который атакует краба. Однако спрут, бросаясь на свою добычу, развивал такую скорость, что фотографии даже при использовании специального режима оказывались смазанными. Это означает, что бросок длился считанные доли секунды!

Однако осьминоги обычно плавают довольно медленно. Ученый Джозеф Сайнл, который исследовал миграции спрутов, выяснил, что осьминог, размер которого составляет 0,5 м, плывет со средней скоростью примерно 15 км/ч. Каждая струя воды, которую он выбрасывает из воронки, продвигает его вперед (точнее сказать, назад, поскольку он плывет задом наперед) где-то на 2-2,5 м.

«Бешеный огурец»

Реактивное движение в природе и в технике можно рассматривать и используя для его иллюстрации примеры из мира растений. Один из самых известных — созревшие плоды так называемого Они отскакивают от плодоножки при малейшем прикосновении. Затем из образовавшегося в результате этого отверстия с большой силой выбрасывается специальная клейкая жидкость, в которой находятся семена. Сам огурец отлетает в противоположную сторону на расстояние до 12 м.

Закон сохранения импульса

Обязательно следует рассказать и о нем, рассматривая реактивное движение в природе и в технике. Знание позволяет нам изменять, в частности, нашу собственную скорость перемещения, если мы находимся в открытом пространстве. К примеру, вы сидите в лодке и у вас с собой есть несколько камней. Если вы будете бросать их в определенную сторону, движение лодки будет осуществляться в противоположном направлении. В космическом пространстве также действует этот закон. Однако там с этой целью применяют

Какие еще можно отметить примеры реактивного движения в природе и технике? Очень хорошо закон сохранения импульса иллюстрируется на примере ружья.

Как известно, выстрел из него всегда сопровождается отдачей. Допустим, вес пули был бы равен весу ружья. В этом случае они бы разлетелись в стороны с одной и той же скоростью. Отдача бывает потому, что создается реактивная сила, так как имеется отбрасываемая масса. Благодаря этой силе обеспечивается движение как в безвоздушном пространстве, так и в воздухе. Чем больше скорость и масса истекающих газов, тем сила отдачи, которую ощущает наше плечо, больше. Соответственно, реактивная сила тем выше, чем сильнее реакция ружья.

Мечты о полетах в космос

Реактивное движение в природе и в технике вот уже долгие годы является источником новых идей для ученых. Много столетий человечество грезило о полетах в космос. Применение реактивного движения в природе и технике, нужно полагать, отнюдь не исчерпало себя.

А началось все с мечты. Писатели-фантасты несколько веков назад предлагали нам различные средства, как достигнуть этой желанной цели. В 17 веке Сирано де Бержерак, французский писатель, создал рассказ о полете на Луну. Его герой добрался до спутника Земли, используя железную повозку. Над этой конструкцией он постоянно подбрасывал сильный магнит. Повозка, притягиваясь к нему, поднималась над Землей все выше и выше. В конце концов, она достигла Луны. Другой известный персонаж, барон Мюнхгаузен, залез на Луну по стеблю боба.

Конечно, в это время еще было мало известно о том, как применение реактивного движения в природе и технике способно облегчить жизнь. Но полет фантазии, безусловно, открывал новые горизонты.

На пути к выдающемуся открытию

В Китае в конце 1 тысячелетия н. э. изобрели реактивное движение, приводящее в действие ракеты. Последние были просто бамбуковыми трубками, которые были начинены порохом. Эти ракеты запускались ради забавы. Реактивный двигатель использовался в одном из первых проектов автомобилей. Эта идея принадлежала Ньютону.

О том, как реактивное движение в природе и в технике возникает, задумывался и Н.И. Кибальчич. Это русский революционер, автор первого проекта реактивного летательного аппарата, который предназначен для полета на нем человека. Революционер, к сожалению, был казнен 3 апреля 1881 года. Кибальчича обвинили в том, что он участвовал в покушении на Александра II. Уже в тюрьме, в ожидании исполнения смертного приговора, он продолжал изучать такое интересное явление, как реактивное движение в природе и в технике, возникающее при отделении части объекта. В результате этих изысканий он разработал свой проект. Кибальчич писал, что эта идея поддерживает его в его положении. Он готов спокойно встретить свою смерть, зная, что столь важное открытие не погибнет вместе с ним.

Реализация идеи полета в космос

Проявление реактивного движения в природе и технике продолжил изучать К. Э. Циолковский (фото его представлено выше). Еще в начале 20 века этот великий русский ученый предложил идею использования ракет в целях космических полетов. Его статья, посвященная этому вопросу, появилась в 1903 году. В ней было представлено математическое уравнение, ставшее важнейшим для космонавтики. Оно известно в наше время как «формула Циолковского». Это уравнение описывало движение тела, имеющего переменную массу. В своих дальнейших трудах он представил схему ракетного двигателя, работающего на жидком топливе. Циолковский, изучая использование реактивного движения в природе и технике, разработал многоступенчатую конструкцию ракеты. Ему также принадлежит идея о возможности создания на околоземной орбите целых космических городов. Вот к каким открытиям пришел ученый, изучая реактивное движение в природе и технике. Ракеты, как показал Циолковский, — это единственные аппараты, которые могут преодолеть Ракету он определил как механизм, имеющий реактивный двигатель, который использует находящееся на нем горючее и окислитель. Этот аппарат трансформирует химическую энергию топлива, которая становится кинетической энергией газовой струи. Сама ракета при этом начинает двигаться в обратном направлении.

Наконец, ученые, изучив реактивное движение тел в природе и технике, перешли к практике. Предстояла масштабная задача реализации давней мечты человечества. И группа советских ученых, возглавляемая академиком С. П. Королевым, справилась с ней. Она осуществила идею Циолковского. Первый искусственный спутник нашей планеты был запущен в СССР 4 октября 1957 г. Естественно, при этом использовалась ракета.

Ю. А. Гагарин (на фото выше) был человеком, которому выпала честь первым осуществить полет в космическом пространстве. Это важное для мира событие произошло 12 апреля 1961 года. Гагарин на корабле-спутнике «Восток» облетел весь земной шар. СССР был первым государством, ракеты которого достигли Луны, облетели вокруг нее и сфотографировали сторону, невидимую с Земли. Кроме того, и на Венере впервые побывали именно русские. Они доставили на поверхность этой планеты научные приборы. Американский астронавт Нил Армстронг — первый человек, побывавший на поверхности Луны. Он высадился на нее 20 июля 1969 года. В 1986 году «Вега-1» и «Вега-2» (корабли, принадлежащие СССР) исследовали с близкого расстояния комету Галлея, которая приближается к Солнцу всего лишь раз в 76 лет. Изучение космоса продолжается…

Как вы видите, очень важной и полезной наукой является физика. Реактивное движение в природе и технике — это лишь один из интересных вопросов, которые рассматриваются в ней. А достижения этой науки весьма и весьма значительны.

Как в наши дни используется реактивное движение в природе и в технике

В физике в последние несколько столетий были сделаны особенно важные открытия. В то время как природа остается практически неизменной, техника развивается стремительными темпами. В наше время принцип реактивного движения широко применяется не только различными животными и растениями, но также в космонавтике и в авиации. В космическом пространстве отсутствует среда, которую тело могло бы использовать для взаимодействия, чтобы изменить модуль и направление своей скорости. Именно поэтому для полетов в безвоздушном пространстве можно использовать лишь ракеты.

Сегодня активно используется реактивное движение в быту, природе и технике. Оно уже не является загадкой, как раньше. Однако человечество не должно останавливаться на достигнутом. Впереди новые горизонты. Хочется верить, что реактивное движение в природе и технике, кратко охарактеризованное в статье, вдохновит кого-то на новые открытия.

Тонкости простейшей формы передвижения природы: реактивное движение кальмаров и гребешков

Ключевые слова: кальмары, гребешок, реактивное движение, гидродинамическая эффективность, Антарктида, онтогенез, масштабирование

Аннотация: Среди многоклеточных животных реактивное движение является самым простым в природе ( и, возможно, его самая старая) форма передвижения в воде. Любое гибкое полое тело, окруженное периферическими мышечными волокнами, может, вытесняя жидкость через отверстие, создавать толчок и тем самым плавать.Несмотря на фундаментальную простоту этого локомоторного механизма, аспекты его реализации в природе продолжают обеспечивать понимание физиологии, экологии и эволюции самых разных животных. В этом докладе я расскажу о двух моллюсках, использующих реактивный двигатель. Антарктический гребешок — один из немногих двустворчатых моллюсков, которые умеют плавать. Подобно своим собратьям с умеренным и тропическим климатом, он хлопает своими панцирями вместе, чтобы извергнуть струю воды, достаточно мощную, чтобы поднять как его внутренние органы, так и плотную карбонатно-кальциевую оболочку с морского дна.Но антарктический гребешок должен совершить этот подвиг в воде при температуре -1,86 градуса Цельсия, температуре, при которой мышечная сила снижается, а вязкость воды в 1,43 раза выше вязкости тропической воды. Масса раковины антарктического гребешка намного меньше, чем у тропического гребешка, но мышечная масса уменьшена еще больше. Единственное чистое преимущество, очевидное у антарктических гребешков, — это повышенная устойчивость «пружины», открывающей раковину, что позволяет предположить, что даже небольшое увеличение гидродинамической эффективности может быть выбрано в ходе эволюции.Повышение гидродинамической эффективности также может играть важную роль в передвижении кальмаров. В отличие от большинства реактивных двигателей (например, медуз, сальп, моллюсков), кальмары могут активно контролировать размер отверстия, через которое выходит вода. Соответствующее сужение реактивного отверстия во время сокращения мантии может повысить эффективность как гидродинамики движения, так и сокращения мускулов. Это потенциальное повышение эффективности может быть наиболее важным для мелкой молоди кальмаров, для которой реактивный двигатель в остальном очень неэффективен.

Многоструйное движение, организованное путем клонального развития в колониальном сифонофоре

  • 1

    Vogel, S. Жизнь в движущихся жидкостях Princeton University Press (2013).

  • 2

    Gladfelter, W. G. Строение и функция опорно-двигательного аппарата Polyorchis montereyensis (Cnidaria, Hydrozoa). Helgolander Wiss. Meeresunters 23 , 38–79 (1972).

    ADS Статья Google ученый

  • 3

    Стааф, Д.Дж., Гилли, В. Ф. и Денни, М. В. Апертурные эффекты в реактивной силовой установке кальмаров. J Exp. Биол. 217 , 1588–1600 (2014).

    Артикул Google ученый

  • 4

    Сазерленд, К. Р. и Мадин, Л. П. Сравнительная структура струйного следа и плавательные характеристики сальп. J Exp. Биол. 213 , 2967–2975 (2010).

    Артикул Google ученый

  • 5

    Мохенси, К.Пульсирующие вихревые генераторы для низкоскоростного маневрирования малых подводных аппаратов. Ocean Eng. 33 , 2209–2223 (2006).

    Артикул Google ученый

  • 6

    Yue, C. et al. Система механтроники и эксперименты сферического подводного робота: SUR-II. J. Intell. Robot Syst. DOI: 10.1007 / s10846-015-0177-3 (2015).

  • 7

    Ким, Х. Д. в 27-й Международный конгресс авиационных наук 1–11 (Ницца, Франция, 2011 г.).

  • 8

    Гохардани А.С. Распределенная двигательная установка Nova Science Publishers (2014).

  • 9

    Беклемишев В. Н. Принципы сравнительной анатомии, Том 1. Проморфология Оливер и Бойд (1969).

  • 10

    Данн, К. Сифонофоры. Curr. Биол. 19 , R233 (2009 г.).

    CAS Статья Google ученый

  • 11

    Робисон, Б.H. Глубинная пелагическая биология. J. Exp. Mar. Biol. Ecol. 300 , 253–272 (2004).

    Артикул Google ученый

  • 12

    Мейпстоун, Дж. М. Глобальное разнообразие и обзор Siphonophorae (Cnidaria: Hydrozoa). PLoS ONE 9 , e87737 (2014).

    ADS Статья Google ученый

  • 13

    Робисон, Б. Х., Райзенбихлер, К. Р., Шерлок Р. Э., Сильгуэро, Дж. М. Б. и Чавес, Ф. П. Сезонная численность сифонофора, Nanomia bijuga , в заливе Монтерей. Deep-Sea Res. 45 , 1741–1751 (1998).

    ADS Google ученый

  • 14

    Mackie, G.O. Анализ передвижения в сифонофорной колонии. Proc. R Soc. B 159 , 366–391 (1964).

    ADS Google ученый

  • 15

    Пью, П.Р. в Зоопланктон Южной Атлантики изд. Болтовской Д. 467–511Backhuys Publishers (1999).

  • 16

    Barham, E.G. Сифонофоры и глубокий рассеивающий слой. Наука 140 , 826–828 (1963).

    ADS CAS Статья Google ученый

  • 17

    Костелло, Дж. Х., Колин, С. П. и Дабири, Дж. О. Морфопространство Медузы: филогенетические ограничения, биомеханические решения и экологические последствия. Invertebr. Биол. 127 , 265–290 (2008).

    Артикул Google ученый

  • 18

    Вестон, Дж., Колин, С. П., Костелло, Дж. Х. и Эбботт, Э. Изменение формы и функции в процессе развития — случай гребных гидромедуз. Mar. Ecol. Прог. Сер. 374 , 127–134 (2009).

    ADS Статья Google ученый

  • 19

    Блау, Т., Колин, С. П., Костелло, Дж. Х. и Маркес, А. С. Онтогенетические изменения морфологии колокольчика, кинематики и плавательного поведения гребных медуз: частный случай лимномедузы Liriope tetraphylla . Biol. Бык. 220 , 6–14 (2011).

    Артикул Google ученый

  • 20

    Колин, С. П., Костелло, Дж. Х., Грэхем, В. М. и Хиггинс, Дж. Всеядность малой космополитической гидромедузы Aglaura hemistoma . Лимнол. Oceanogr. 50 , 1264–1268 (2005).

    ADS Статья Google ученый

  • 21

    Дабири, Дж. О., Колин, С. П. и Костелло, Дж. Х. Быстро плавающие гидромедузы используют велярную кинематику для формирования оптимального вихревого следа. J. Exp. Биол. 209 , 2025–2033 (2006).

    Артикул Google ученый

  • 22

    Геммелл, Б.J., Jiang, H. & Buskey, E.J. Новый подход к микромасштабной велосиметрии изображений частиц (μPIV) для количественной оценки потоков вокруг свободно плавающего зоопланктона. J. Plankton Res. 36 , 1396–1401 (2014).

    Артикул Google ученый

  • 23

    Gemmell, B.J. et al. Пассивное возвращение энергии медузами способствует их преимуществу перед другими многоклеточными животными. Proc. Natl Acad. Sci. США 110 , 17904–17909 (2013).

    ADS CAS Статья Google ученый

  • 24

    Сазерленд, К. Р., Костелло, Дж. Х., Колин, С. П. и Дабири, Дж. О. Движение окружающей жидкости влияет на плавание и питание гребневиком Mnemiopsis leidyi . J. Plankton Res. 36 , 1310–1322 (2014).

    Артикул Google ученый

  • 25

    Колин С. П., Костелло Дж.Х., Ханссон, Л. Дж., Тительман, Дж. И Дабири, Дж. О. Незаметное хищничество и хищнический успех инвазивного гребневика Mnemiopsis leidyi . Proc. Natl Acad. Sci. США 107 , 17223–17227 (2010).

    ADS CAS Статья Google ученый

  • Колония морских животных обнаружена как многоструйный плавательный аппарат

    Морские животные, плавающие за счет реактивного движения, такие как кальмары и медузы, не редкость.Но редко можно найти колонию животных, которая координирует несколько движений для передвижения всей группы. На этой неделе в Nature Communications ученые сообщают о колониальном виде, похожем на медузу, который использует сложную многоструйную двигательную установку, основанную на элегантном разделении труда между молодыми и старыми членами колонии.

    [view: story = block_1]

    «Это высокоэффективная система, в которой ни одна стадия развития не теряется зря», — сказал ведущий автор Джон Х. Костелло из колледжа Провиденс, научный сотрудник и исследователь Центра Уитмана в Морской биологической лаборатории в Вудс-Хоул, штат Массачусетс.MBL является филиалом Чикагского университета. Команда Костелло обнаружила, что молодые члены на переднем конце двигательной установки колонии используют свои маленькие реактивные двигатели для поворота и рулевого управления, в то время как более старшие и более крупные члены, расположенные дальше назад, обеспечивают мощную тягу, поскольку колония мигрирует из глубины океана на поверхность.

    «Это довольно сложный дизайн, который может показаться простой компоновкой», — сказал Костелло. Команда предложила, что локомотив колонии может пролить свет на конструкцию подводных аппаратов с распределенным двигателем.

    Nanomia bijuga принадлежит к группе колониальных организмов, называемых сифонофорами Physonect, которые связаны с медузами, анемонами и кораллами. Прожорливые хищники планктона, физонекты выходят на поверхность океана ночью, чтобы поесть, а днем ​​возвращаются на более темные глубины — по-видимому, чтобы избежать визуальных хищников, таких как рыба.

    Члены колонии физонект, производящие струи, называемые нектофорами, представляют собой генетически идентичные клоны, расположенные в двигательной единице, называемой нектосомой.Длина нектосомы составляет всего несколько сантиметров, но она тянет за собой гораздо более длинные группы репродуктивных и кормовых единиц на расстояния, которые могут достигать 200 метров в день. Это эквивалент взрослого человека, который каждый день пробегает марафон, буксируя за собой эквивалент массы своего тела.

    Чтобы проанализировать это мастерство плавания, ученые записали на видео физику в районе Фрайдей-Харбор, штат Вашингтон, а затем использовали анализ изображений (освещение с помощью лазерного луча), чтобы измерить потоки частиц вокруг колонии во время ее движения.Это выявило размер и тягу отдельных струй, а также их угол по отношению к оси животного. Они обнаружили, что самые молодые особи выталкивают своими струями наименьшее количество воды. Но поскольку они расположены на конце нектосомы, далеко от того места, где она соединяется с остальной частью колонии, небольшая направленная сила этих молодых членов имеет большое влияние на поворот всей колонии.

    «У молодых участников есть то, что мы называем длинной рычажной рукой», — сказал Костелло. «Они похожи на дверную ручку.Если вы толкнете дверь возле ее петель — оси вращения — дверь будет трудно открыть. Но если надавить на дверную ручку, которая находится далеко от оси вращения, дверь легко открывается. Небольшая сила, приложенная к большому плечу рычага, имеет большое влияние на поворот ».

    Молодые члены колонии позволяют N. bijuya быстро менять курс и даже полностью менять направление плавания. По мере того, как новые нектофоры образуются на конце нектосомы, более старые отодвигаются дальше назад, где их более крупные сокращения полезны для толчка.«Эти закономерности позволяют всем членам колонии вносить важный вклад в характеристики движения и маневрирования, которые имеют решающее значение для успеха N. bijuya в его естественной среде», — пишут авторы.

    «То, что молодые люди маленькие, — сказал Костелло, — не означает, что они не важны».

    Образец цитирования: Костелло Дж. Х., Колин С. П., Джеммелл Б. Дж., Дабири Дж. О. и Сазерленд К. Р. (2015) Многоструйная силовая установка, организованная путем клонального развития в колониальном сифонофоре. Nature Communications 6: 8158 DOI: 10.1038 / ncomms9158

    «Наутилус» с камерами — самый эффективный реактивный двигатель в океане

    Подобно крошечной подводной лодке, «наутилус» с камерами несется через океан на маленьких струях, которые он создает, всасывая воду и выплевывая ее.

    Однако, учитывая способы передвижения, реактивный двигатель обычно не очень хорошо использует энергию. В глубинах океана, где кислород становится разреженным, наутилус, кажется, подвергает себя риску, тратя столько усилий на движение.Рыбы потребляют гораздо меньше энергии, толкая воду плавниками. Так как же ему удается невредимым летать в глубинах океана?

    Грэм Аскью, профессор биомеханики в Университете Лидса, отправился с аспирантом Томасом Нилом, чтобы лучше понять, как движется этот моллюск. Они обнаружили, что наутилус на самом деле является высокоэффективным реактивным существом, тратящим гораздо меньше энергии, чем морские организмы, такие как кальмары или медузы, которые передвигаются аналогичным образом.

    Исследователи начали свое исследование, опубликованное в среду в Royal Society Open Science, с обильного посыпания аквариума крохотными плавающими частицами оксида алюминия.Затем, одну за другой, они поместили в резервуар пять наутилусов с камерами и позволили им взлететь.

    Они использовали высокоскоростные камеры, лазер, освещающий частицы, и программное обеспечение, которое могло регистрировать движение частиц. В созвездии пятнышек они увидели, как животные всасывают воду, а затем вытесняют ее в направлении, от которого они движутся, при этом карман изгнанной воды и наутилус стреляют в стороны со скоростью, которую они легко могут вычислить.

    Когда они посчитали, исследователи увидели, что наутилус был способен использовать от 30 до 75 процентов энергии, которую он передавал воде, для движения.

    Это было намного выше, чем у других аналогичных пловцов. «Squid, как правило, их эффективность составляет от 40 до 50 процентов», — сказал д-р Аскью.

    Медузы в форме колокольчиков, которые заставляют свои колокольчики выбрасывать воду, также, как правило, имеют эффективность ниже 50 процентов.

    В общем, перемещение очень больших объемов воды относительно медленно, как это делают хвост рыбы или ласты ныряльщика, тратит меньше энергии, чем необходимость быстрого ускорения очень небольших объемов. Но наутилус явно нашел способ заставить его работать.

    Похоже, сказал д-р Аскью, когда они всасывают воду, они делают это в широком потоке, а не в более дорогостоящем узком потоке. И они тратят больше времени на впрыскивание, чем на доливку в определенных сценариях плавания, осторожно выкачивая жидкость, которую они уже проглотили. Эти стратегии могут способствовать их способности эффективно плавать, обходясь в ситуациях, когда более сильная струя может их достать. в беде, как в глубоком океане с низким содержанием кислорода.

    Тем не менее, для получения более подробной информации о стратегиях выживания наутилуса поклонникам этого существа придется обратиться к исследованиям других групп.Доктор Аскью и его коллеги с тех пор обратили свое внимание — и свою высокоскоростную камеру — на каракатиц, чтобы больше узнать о том, как движутся эти водные пловцы.

    Подробнее:

    _____

    Ставьте лайк на странице Science Times на Facebook. | Подпишитесь на информационный бюллетень Science Times.

    морских животных, использующих водометные двигатели

    Пятнистый кальмар бобтейл (Eumandya parva) — небольшой головоногий моллюск, обитающий в красивых водах, окружающих Окинаву. Их сложно найти из-за небольшого размера.Настойчивость, терпение и ныряние с приятелем с хорошим зрением увеличат ваши шансы найти его.

    • Научное название : Eumandya parva
    • Общее название : Бобтейл-кальмар
    • Найдено : Острова Рюкю
    • Среда обитания : Открытая вода ночью
    • Средний размер : 15 мм — 25 мм

    Кальмар бобтейл имеет восемь рук и два щупальца, используемых для захвата добычи. У них есть клюв, похожий на попугай, состоящий из двух частей, используемый для кормления.В основном они питаются мелкими рачками, свободно плавающими в открытой воде.

    Что действительно впечатляет в головоногих моллюсках, так это то, что они мастера уклонения. Они оснащены усовершенствованными зеркальными ячейками. Эти клетки могут менять форму и цвет, чтобы соответствовать своему окружению. Эти яркие хромотофоры также используются для общения и привлечения партнера.

    Кальмар бобтейл имеет способность производить большое чернильное облако (дымовую завесу), когда он в опасности. Это чернильное облако запутает хищников и даст кальмарам шанс благополучно спастись.

    Squid имеет крыловидные плавники, которые используются для точного передвижения по открытой воде. Их сифон используется для реактивного движения, позволяя убежать от хищников.
    Они также могут уклоняться от хищников, прикрываясь песком, чтобы избежать обнаружения.

    Я нашел эту большую Euprymna brenneri, покрытую песком, чтобы ее не обнаружили. Я видел только два из них в водах Окинавы. Новый вид описан в декабре 2019 года.

    Сезон спаривания приходится на летние месяцы.

    Присмотритесь, и вы увидите белый пучок сперматофоров, образовавшийся в процессе спаривания. Яйца будут оплодотворены и прикреплены к безопасному месту под выступом рифа. Крошечный кальмар бобтейл вылупится из яиц через три недели.

    Если вы хотите узнать больше о головоногих моллюсках Окинавы, ознакомьтесь с моими предыдущими сообщениями о синекольчатых осьминогах, карликовых кальмарах, каракатицах-фараонах и осьминогах Окинавы, питающихся раковинами.

    Моя миссия : Документирование и сохранение дикой природы островов Рюкю

    Этот сайт также предназначен для того, чтобы помочь людям идентифицировать красивых животных Окинавы, в основном для того, чтобы служить в качестве онлайн-справочника по природе.Если вы хотите внести свой вклад в поддержку моей миссии, нажмите ссылку для пожертвований paypal.me/maketheswitch5nature

    Ваши пожертвования помогут природоохранным инициативам, а также помогут найти решения мировых проблем загрязнения окружающей среды на наших прекрасных берегах. Спасибо за вашу поддержку, Шон Миллер.

    # MakeTheSwitch5Nature

    Окунитесь в мир фа-миллера с природой островов Рюкю — — — ПОДПИСАТЬСЯ НИЖЕ

    (PDF) Биологически-вдохновленная водная двигательная установка

    Sioma: Бионическая водная двигательная установка 281

    Приготовлена ​​ионная система.Результаты анализов и испытаний прототипа

    подтверждают принятую концепцию инновационной водной двигательной установки

    . Это решение

    может использоваться для движения наземных и подземных транспортных средств с очень высокой эффективностью

    .

    Благодарность

    Исследование проводится в Департаменте управления процессами

    Control, AGH University of Science and Technology

    под номером установленного законом исследования 11.11.130.560.

    Источники

    [1] Макивер М.А., Фонтейн Э., Бердик Дж. У.Проектирование подводных аппаратов будущего

    : Принципы и механизмы слабоэлектрической рыбы

    . IEEE Journal of Oceanic Engineering,

    2004, 39, 651–659.

    [2] Вилли А., Лоу К. Х. Разработка и начальный эксперимент

    модульного волнистого ребра для отвязанных биороботических АПА.

    Труды Международной конференции IEEE по ботанике и биомиметике Ro-

    , Гонконг, Китай, 2005 г., стр. 45–50.

    [3] Nguyen QS, Park HC, Byun D.Анализ тяги робота Fish

    , приводимого в действие пьезокерамическими композитными приводами. Журнал

    журнала Bionic Engineering, 2011, 8, 158–164.

    [4] Ян Цюй, Ван Л., Лю Б., Ян Дж., Чжан С. Новое устройство —

    — гибкое роботизированное плавник, приводимое в действие с помощью формы из сплава

    . Журнал бионической инженерии, 2012, 9, 156–165.

    [5] Хео С., Вигуна Т., Парк А.С., Гу Н.С. Влияние искусственного хвостового плавника

    на работу биомиметического рыбного робота

    , приводимого в движение пьезоэлектрическими приводами.Журнал Bionic En-

    gineering, 2007, 4, 151–158.

    [6] Ян Ц., Хань З., Чжан С., Ян Дж. Параметрическое исследование

    экспериментов с роботизированной рыбой в форме панциря. Журнал Bionic

    Engineering, 2005, 5, 95–101.

    [7] Лю И, Чен В., Лю Дж. Исследование качания тела

    двухсуставных рыб-роботов. Журнал Bionic Engineering, 2008, 5,

    159–165.

    [8] Ситорус П.Э., Назаруддин Й.И., Лексоно Э., Будийоно А.De-

    Признак и реализация парного движения грудных плавников

    лабриформных рыб применительно к роботу-рыбе. Журнал Bionic

    Engineering, 2009, 6, 37–45.

    [9] Во Т Кью, Ким Х. С., Ли Б. Р. Оптимизация движущей силы

    3-шарнирного рыбного робота с использованием генетического алгоритма восхождения на холм.

    Журнал бионической инженерии, 2009, 6, 415–429.

    [10] Ван Т., Вен Л., Лян Дж., Ву Г. Контроль нечеткой завихренности биомиметической рыбы-робота

    с помощью взмахивающего полулунного хвоста.Журнал

    компании Bionic Engineering, 2010, 7, 56–65.

    [11] Лю Дж, Ху Х. Биологическое вдохновение: от рыбы-панциря до

    многосуставных рыб-роботов. Журнал Bionic Engineering, 2010,

    7, 35–48.

    [12] Чжоу Х., Ху Т, Се Х., Чжан Д., Шен Л. Вычислительная

    гидродинамика и статистическое моделирование биологически ин-

    волнистых ребристых плавников робота: двухмерное исследование.

    Журнал бионической инженерии, 2010, 7, 66–76.

    [13] Ян С., Цю Дж., Хань Х. Кинематическое моделирование и эксперименты —

    экспериментов с грудными колебаниями-толкателями-роботами-рыбами. Журнал

    компании Bionic Engineering, 2009, 6, 174–179.

    [14] Цай Й, Би С., Чжэн Л. Дизайн и эксперименты с роботом

    , имитирующим рыбу с коровьим носом. Журнал Bionic Engineering,

    2010, 7, 120–126.

    [15] Zhou C, Low K. Повышенная выносливость и грузоподъемность: улучшенная конструкция

    робота-манта (RoMan-II).Журнал

    Bionic Engineering, 2010, приложение, S137 – S144.

    [16] Zhang Y, He J, Low K H. Параметрическое исследование подводного движителя с ребрами

    , вдохновленное синим пятном. Журнал

    Bionic Engineering, 2012, 9, 166–176.

    [17] Шамуэй С.Е., Парсонс Дж. Дж. Гребешки: биология, экология и

    Аквакультура, Эльзевир, Амстердам, Нидерланды, 2006.

    [18] Денни М., Миллер Л. Реактивное движение на холоде: механика

    плавание в антарктическом гребешке adamussium colbeck.Журнал экспериментальной биологии

    , 2006, 209, 4503–4514.

    [19] Коваль Дж., Сиома А. Система активного технического зрения для трехмерного контроля изделий

    . Техника управления, 2009, 56, 46–48.

    [20] Титко А., Сиома А. Оценка эксплуатационных параметров канатов

    , в изд. Кот А., Технологии управления в материалах

    Обработка, явления твердого тела, Trans Tech Publications,

    Uetikon-Zuerich, Switzerland , 2011, 177, 125–134.

    [21] Беднарчик Дж., Сиома А.Применение метода визуальных измерений —

    для оценки электродинамической штамповки

    , в изд. Kot A, Control Engineering in Materials

    Processing, Solid State Phencies, Trans Tech Publications,

    Uetikon-Zuerich, Switzerland, 2011 , 177, 1–9.

    [22] Сиома А., Самек А. Бионика: вдохновение для инженеров,

    Монография, Университет науки и технологий AGH

    Press, Польша, 2007.

    [23] Самек А.Бионика: естественные науки для инженеров, Mono-

    grafy, AGH University of Science and Technology Press,

    Poland, 2010.

    [24] Самек А. Бионика — звено, соединяющее инженерное дело и

    природу. Труды 5-й Международной конференции по контролю за карпатами

    (ICCC ’2004), Закопане, Польша, 2004. Реактивный двигатель

    Cephalopod раскрывает подсказки о том, как кальмары маневрируют в турбулентных потоках. — ScienceDaily

    Кальмары и другие головоногие моллюски используют форму реактивного движения, которая недостаточно изучена, особенно когда речь идет об их гидродинамике в условиях турбулентного потока.Раскрытие их секретов может помочь создать новые конструкции для подводных роботов и транспортных средств, которые должны работать в этой среде.

    Исследователи из Шотландии, США и Китая изучают фундаментальный механизм импульсной реактивной тяги кальмаров. В публикации Physics of Fluids от AIP Publishing группа описывает свое численное исследование реактивного движения головоногих моллюсков с турбулентным потоком, рассматриваемым впервые. Среди своих открытий они обнаружили, что производство тяги и эффективность недооцениваются в ламинарных или нетурбулентных потоках.

    Модель для этого исследования — двухмерный пловец, похожий на кальмара, который имеет гибкое мантийное тело с барокамерой и соплом, которое служит для входа и выхода воды. На гибкую мантийную поверхность модели воздействует внешняя сила, имитирующая сокращение мускулов кальмара.

    «В результате внутренний объем тела уменьшается, и вода внутри камеры выбрасывается, образуя струйный поток», — сказал Ян Луо, один из авторов и научный сотрудник Университета Стратклайд в Глазго, Шотландия.«Кальмар продвигается вперед сильной струей в противоположном направлении, затем мантия автоматически надувается в результате накопленной упругой энергии. Во время надувания мантии вода всасывается в камеру и выбрасывается во время следующего сдувания мантии».

    По словам Луо, реактивная тяга

    может быть более эффективной, если принять во внимание турбулентный поток. Группа также обнаружила нарушающую симметрию неустойчивость вихрей вокруг струи, которая испускает струи воды после нескольких непрерывных циклов струи.

    «Это может помочь лучше понять, почему плавание рывком и берегом используется молодыми и взрослыми кальмарами, которые работают в турбулентных потоках чаще, чем вылупившиеся кальмары, которые работают в ламинарных потоках», — сказал Луо.

    Помимо реактивного движения, молодые и взрослые кальмары также довольно часто полагаются на колебания плавников на голове при плавании. Группа обнаружила, что этот стиль взрыва и выбега может помочь кальмарам избежать нарушающей симметрию нестабильности окружающего вихря потока, которая может вызвать снижение тяги и эффективности.

    «Результаты нашей работы о механизме нарушающей симметрию нестабильности служат руководством для проектирования подводных роботов и транспортных средств в стиле кальмаров», — сказал Луо. «Непрерывное реактивное движение может быть неблагоприятным, и необходимы специальные меры для смягчения эффекта этой нестабильности при проектировании подводных аппаратов или движителей с реактивным двигателем посредством активного контроля деформации тела, чтобы изменить эволюцию структуры внутренних вихрей».

    Увидим ли мы в ближайшее время новые подводные лодки с реактивным двигателем?

    «На данный момент трудно определить», — сказал Луо.«Но как относительно менее изученная форма подводной двигательной установки, она выгодна с точки зрения простого механизма эффективного мгновенного покидания и высокой маневренности. Это делает ее многообещающей для интеграции с типовой двигательной установкой для достижения маневренности по требованию».

    История Источник:

    Материалы предоставлены Американским институтом физики . Примечание. Содержимое можно редактировать по стилю и длине.

    .